

(An ISO 21001 : 2018 Certified Institution)
Periyar E.V.R. High Road, Maduravoyal, Chennai-95. Tamilnadu, India.

FACULTY OF ENGINEERING AND TECHNOLOGY OUTCOME BASED EDUCATION

CURRICULUM & SYLLABUS

BACHELOR OF TECHNOLOGY COMPUTER SCIENCE AND ENGINEERING

REGULATION 2022

DEPARTMENT OF
COMPUTER SCIENCE AND ENGINEERING

Department of CSE

Vision:

To become a Premier Institution of Excellence in Computer Science and Engineering that would develop self sustaining and globally competent Computer Science and Information Technology Professionals.

Mission:

M1: Enable students with the best of Technologies and Knowledge emerging in the domain of Computer Science and Engineering.

M2: Equip the department laboratories with the power of in-demand Technologies and Software for the On-Demand Industry.

M3: Share and Collaborate knowledge across the IT Industries for holistic development of skilled and talented students.

M4: Impart the students with Ethical values, Critical thinking and Broad based computational skills.

M5: Motivate the students to comprehend problems across Inter Disciplinary Domains and offer innovative solution using ICT.

B. Tech-CSE Program Educational Objectives (PEO)

The Graduate will be able to

PEO1: Establish a career in Computer Science and Engineering in Industry, Government, Academia and work collaboratively with Peers

PEO2: Successfully pursue Higher Studies in the field of Engineering, Science, Technology and Management and/or take up Research

PEO3: Promote Design, Research and implementation of Products and Services in the field of Computer Science & Engineering through strong Communication, Leadership and Entrepreneurial Skills

PEO4: Engage himself in a Professional, Ethical and Responsible manner to the Profession, Industry, Nation and the Society

PEO5: Undertake the development of Innovative Systems and Solutions using Hardware and Software integration

PEO6: Contribute to the Nation's ICT Mission through software development and ICT related activities of the government

B. Tech-CSE Program Specific Outcomes (PSO)

PSO's describe what students are expected to know or be able to do by the time of graduation from the program.

PSO1: To apply the knowledge and professional skill of theoretical Computer science to provide ethical solutions for real world problems

PSO2: To comprehend highly complex engineering problems with the knowledge of basic science and engineering.

PSO3: To design economic, innovative hardware and software system for various domains.

PSO4: To create platforms for secured information sharing and management for engineering or social applications.

B. Tech-CSE Program Outcomes (PO)

PO1: Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2: Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3: Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4: Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5: Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6: The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7: Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8: Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9: Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10: Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11: Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12: Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Mapping of Mission with PEO

Mission/ PEO	PEO1	PEO2	PEO3	PEO4	PEO5	PEO6
M1	3	3	3	2	3	2
M2	3	3	3	1	2	2
M3	3	2	3	3	2	1
M4	2	2	3	3	3	1
M5	2	2	3	2	3	3

Mapping of PEO with PO

PEO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
PEO1	3	3	3	2	2	3	1	2	3	2	1	3
PEO2	3	3	3	2	2	3	2	2	1	3	1	3
PEO3	3	3	3	3	2	2	2	2	3	3	3	2
PEO4	3	3	3	1	2	3	3	3	3	2	1	1
PEO5	3	3	3	3	3	2	2	2	3	2	3	3
PEO6	3	2	2	1	2	3	3	3	3	3	3	2

Mapping of PEO with PSO

PEO/PSO	PSO1	PSO2	PSO3	PSO4
PEO1	3	3	2	1
PEO2	2	2	1	2
PEO3	2	3	3	3
PEO4	3	1	2	2
PEO5	1	2	3	2
PEO6	2	2	2	2

Strength of Correlation 3-High 2-Medium 1-L

SEMESTER - I

COURSE CODE	COURSE NAME	Ty/Lb/ETL/IE	L	T/SLr	P/R	C	Category
EBEN22001	TECHNICAL ENGLISH	Ту	2	0/0	0/0	2	HS
EBMA22001	MATHEMATICS – I	Ту	3	1/0	0/0	4	BS
EBPH22ET1	ENGINEERING PHYSICS	ETL	2	0/0	2/0	3	BS
EBCH22ET1	ENGINEERING CHEMISTRY	ETL	2	0/0	2/0	3	BS
EBME22ET1	BASIC MECHANICAL & CIVIL ENGINEERING	ETL	2	0/0	2/0	3	ES
EBCS22ET1	C PROGRAMMING AND MS OFFICE TOOLS	ETL	1	0/0	2/0	2	PC
EBCC22I01	ORIENTATION TO ENTREPRENEURSHIP & PROJECT LAB	IE	1	0/0	1/0	1	ID
			Cı	redits Sub	Total	18	

SEMESTER – II

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/SLr	P/R	C	Category			
EBMA22003	MATHEMATICS – II	Ту	3	1/0	0/0	4	BS			
EBPH22001	SOLID STATE PHYSICS	Ту	3	0/0	0/0	3	BS			
EBCH22002	TECHNICAL CHEMISTRY	Ту	3	0/0	0/0	3	BS			
EBME22001	ENGINEERING GRAPHICS	Ту	2	0/0	2/0	3	ES			
EBCS22001	FUNDAMENTALS OF COMPUTER ENGINEERING	Ту	3	0/0	0/0	3	PC			
EBCC22I02	COMMUNICATIVE ENGLISH LAB	IE	1	0/0	1/0	1	HS			
EBCS22ET2	PYTHON PROGRAMMING	ETL	1	0/0	2/0	2	PC			
EBCC22I03	ENVIRONMENTAL SCIENCE (Audit Course)	IE	1	0/0	1/0	0	HS			
_	Credits Sub Total									

TOTAL CREDITS: 37

Dr.M.G.R. Educational and Research Institute (Deemed to be University)
Department of Computer Science and Engineering
2022 Regulation

		III SEMESTER							
S.NO.	COURSE	COURSE NAME	Ty/Lb/	L	T/	P/R	C	Category	
	CODE		ETL/IE		S.Lr				
1	EBMA22006	DISCRETE MATHEMATICS	Ty	3	1/0	0/0	4	BS	
2	EBCS22002	DATA STRUCTURES	Ty	3	1/0	0/0	4	PC	
3	EBCS22003	DATABASE MANAGEMENT SYSTEM	Ту	3	0/0	0/0	3	PC	
4	EBEC22ID1	DIGITAL PRINCIPLES AND SYSTEM DESIGN	Ту	3	0/0	0/0	3	ID	
5	EBEE22ID1	BASIC ELECTRICAL ENGINEERING	Ту	3	0/0	0/0	3	ID	
		PRACTICALS*							
1	EBCC22ET1	UNIVERSAL HUMAN VALUES:UNDERSTANDING HARMONY	ETL	1	0/0	2/0	2	ID	
2	EBCS22L01	DATA STRUCTURES LAB	Lb	0	0/0	3/0	1	PC	
3	EBCS22L02	DATABASE MANAGEMENT SYSTEM LAB	Lb	0	0/0	3/0	1	PC	
4	EBEC22IL1	DIGITAL SYSTEMS LAB	Lb	0	0/0	3/0	1	ID	
5	EBCS22ET3	OBJECT ORIENTED PROGRAMMING WITH C++	ETL	2	0/0	2/0	3	PC	
	Credits Sub Total 25								

IV SEMESTER									
S.NO.	COURSE	COURSE NAME	Ty/Lb/	L	T/	P/R	C	Category	
	CODE		ETL/IE		S.Lr				
1	EBMA22011	STATISTICS FOR COMPUTER	Ty	3	1/0	0/0	4	BS	
2		ENGINEERS DESIGN AND ANALYSIS OF						PC	
2	EBCS22004	ALGORITHMS	Ty	3	0/0	0/0	3	rc	
3	EBCS22005	OPERATING SYSTEM	Ty	3	0/0	0/0	3	PC	
4	EBEC22ID2	MICROPROCESSOR AND	Ту	3	0/0	0/0	3	ID	
	22202122	MICROCONTROLLERS	- 7		0, 0	0, 0			
	EBCC22I04/	THE INDIAN CONSTITUTION/					_		
5	EBCC22I05	THE INDIAN TRADITIONAL	IE	2	0/0	0/0	0	ID	
		KNOWLEDGE(Audit Course)							
	T	PRACTICALS*	1	1	Г	1			
1	EBEC22IL2	MICROPROCESSOR AND	Lb	0	0/0	3/0	1	ID	
		MICROCONTROLLERS LAB							
2	EBCS22L03	DESIGN AND ANALYSIS OF	Lb	0	0/0	3/0	1	PC	
		ALGORITHMS LAB			0, 0				
3	EBCS22L04	OPERATING SYSTEM LAB	Lb	0	0/0	3/0	1	PC	
4	EBCS22ET4	JAVA PROGRAMMING	ETL	2	0/0	2/0	3	PC	
5	EBCS22I01	TECHNICAL SKILL I	IE	0	0/0	2/0	1	SC	
6	EBCC22I06	SOFT SKILL I -Employability Skills	IE	0	0/0	2/0	1	SC	
Credits Sub Total									

		V SEMESTER								
S.NO.	COURSE	COURSE NAME	Ty/Lb/	L	T /	P/R	C	Category		
	CODE		ETL/IE		S.Lr					
1	EBCS22006	COMPUTER ORGANIZATION		3	1/0	0/0	4	PC		
	EBC522000	AND ARCHITECTURE	Ty	3	1/0	0/0	7			
2	EBCS22007	COMPUTER NETWORKS	Ty	3	0/0	0/0	3	PC		
3	EBCS22008	PRINCIPLES OF COMPILER DESIGN	Ту	3	0/0	0/0	3	PC		
4	EBCS22EXX	PROGRAM ELECTIVE I	Ту	3	0/0	0/0	3	PE		
5	EBXX22OEX	OPEN ELECTIVE I	Ту	3	0/0	0/0	3	ID		
6	EBOL22I01	ONLINECOURSE (NPTEL/SWAYAM /Any MOOC approved by AICTE/UGC)	IE	1	0/0	1/0	1	ID		
		PRACTICALS*								
1	EBCS22L05	NETWORK PROGRAMMING LAB	Lb	0	0/0	3/0	1	PC		
2	EBCS22L06	COMPILER DESIGN LAB	Lb	0	0/0	3/0	1	PC		
3	EBCS22ET5	USER EXPERIENCE DESIGN	ETL	2	0/0	2/0	3	PC		
4	EBCS22I02	TECHNICAL SKILL II	IE	0	0/0	2/0	1	SC		
	Credits Sub Total 23									

		VI SEMESTER						
S.NO.	COURSE	COURSE NAME	Ty/Lb/	L	T /	P/R	C	Category
	CODE		ETL/IE		S.Lr			
1	EBCS22009	OBJECT ORIENTED SOFTWARE ENGINEERING	Ту	3	0/0	0/0	3	PC
2	EBCS22010	WEB DESIGN USING PHP& MYSQL	Ту	3	0/0	0/0	3	PC
3	EBCS22011	ARTIFICIAL INTELLIGENCE	Ту	3	0/0	0/0	3	PC
4	EBCS22EXX	PROGRAM ELECTIVE II	Ty	3	0/0	0/0	3	PE
5	EBXX22OEX	OPEN ELECTIVE II	Ty	3	0/0	0/0	3	ID
		PRACTICALS*						
1	EBCS22L07	OBJECT ORIENTED SOFTWARE ENGINEERING LAB	Lb	0	0/0	3/0	1	PC
2	EBCS22L08	WEB DESIGN USING PHP& MYSQL LAB	Lb	0	0/0	3/0	1	PC
3	EBCC22I07	SOFT SKILL II -QUALITATIVE AND QUANTITATIVE SKILLS	IE	0	0/0	2/0	1	SC
4	EBCS22I03	TECHNICAL SKILL III	ΙE	0	0/0	2/0	1	SC
5	EBCS22I04	MINI PROJECT/INTERNSHIP	IE	0	0/0	3/0	1	SC
Credits Sub Total 20								

	VII SEMESTER										
S.NO.	COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/ S.Lr	P/R	С	Category			
1	EBCS22012	BIG DATA ANALYTICS	Ty	3	1/0	0/0	4	PC			
2	EBCS22EXX	PROGRAM ELECTIVE III	Ту	3	0/0	0/0	3	PE			
3	EBCS22013	CONNECTED BUSINESS	Ту	3	0/0	0/0	3	PC			
4	EBCS22014	CLOUD COMPUTING	Ту	3	1/0	0/0	4	PC			
5	EBCS22015	MACHINE LEARNING	Ту	3	0/0	0/0	3	PC			
		PRACTICALS*		•			•				
1	EBXX22OLX	OPEN LAB	Lb	0	0/0	3/0	1	ID			
2	EBCS22L09	DATA ANALYTICS LAB USING MACHINE LEARNING ALGORITHMS	Lb	0	0/0	3/0	1	PC			
3	EBCS22L10	CLOUD COMPUTING LAB	Lb	0	0/0	3/0	1	PC			
4	EBCS22I05	PROJECT PHASE – 1	IE	0	0/0	3/3	2	P			
5	EBFL22IXX	FOREIGN LANGUAGE	IE	1	0/0	1/0	1	HS			
Credits Sub Total 23											

		VIII SEMESTER						
S.NO.	COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/ S.Lr	P/R	С	Category
1	EBCC22ID2	PRINCIPLES OF MANAGEMENT AND BEHAVIORAL SCIENCE	Ту	3	0/0	0/0	3	ID
2	EBCS22EXX	PROGRAM ELECTIVE IV	Ту	3	0/0	0/0	3	PE
3	EBCS22EXX	PROGRAM ELECTIVE V	Ту	3	0/0	0/0	3	PE
		PRACTICALS*						
1	EBCS22L11	PROJECT PHASE – II	Lb	0	0/0	12/12	8	P
Credits Sub Total:17								

TOTAL CREDITS:166

Credit Summary

Semester: 1:18

Semester : 2 : 19

Semester : 3 : 25

Semester : 4 : 21

Semester : 5 : 23

Semester : 6 : 20

Semester: 7:23

Semester: 8:17

Total Credits: 166

		PROGRAM ELECTIVE	-I				
S.NO.	COURSE	COURSE NAME	Ty/Lb/	L	T/	P/R	C
	CODE		ETL/IE		S.Lr		
1	EBCS22E01	IMAGE PROCESSING	Ту	3	0/0	0/0	3
2		GEOGRAPHICAL	Ty				
	EBCS22E02	INFORMATION		3	0/0	0/0	3
		SYSTEMS					
3	EBCS22E03	DATABASE TUNING	Ty	3	0/0	0/0	3
4	EBCS22E04	COMPONENT BASED	Ty	3	0/0	0/0	3
	EBCS22E04	TECHNOLOGY		3	0/0	0/0	3
5	EBCS22E05	E-COMMERCE	Ty	3	0/0	0/0	3
6	EBCS22E06	COMPUTER GRAPHICS	Ty	3	0/0	0/0	3
	EDC322E00	AND MULTIMEDIA		3	0/0	U/U	3
7	EBCS22E07	WIRELESS AND MOBILE	Ty	3	0/0	0/0	3
	EDC522E07	NETWORKING		י	0/0	0/0	3

		PROGRAM ELEC	TIVE -II				
S.NO.	COURSE	COURSE NAME	Ty/Lb/	L	T/	P/R	С
	CODE		ETL/IE		S.Lr		
1	EBCS22E08	5 G NETWORKS	Ty	3	0/0	0/0	3
2	EBCS22E09	INFORMATION STORAGE MANAGEMENT	Ту	3	0/0	0/0	3
3	EBCS22E10	RISK MANAGEMENT	Ty	3	0/0	0/0	3
4	EBCS22E11	CRYPTOGRAPHY AND NETWORK SECURITY	Ту	3	0/0	0/0	3
5	EBCS22E12	MOBILE ADHOC NETWORKS	Ту	3	0/0	0/0	3
6	EBCS22E13	NETWORK INFRASTRUCTURE MANAGEMENT	Ту	3	0/0	0/0	3
7	EBCS22E14	CYBER FORENSICS AND INTERNET SECURITY	Ту	3	0/0	0/0	3
8	EBCS22E15	DATABASE SECURITY	Ty	3	0/0	0/0	3
9	EBCS22E16	MANAGEMENT INFORMATION SYSTEMS	Ту	3	0/0	0/0	3

		PROGRAM ELEC	CTIVE –III				
S.NO.	COURSE	COURSE NAME	Ty/Lb/	L	T/	P/R	C
	CODE		ETL/IE		S.Lr		
1	EBCS22E17	MOBILE APPLICATION DEVELOPMENT	Ту	3	0/0	0/0	3
2	EBCS22E18	DATA SCIENCE	Ту	3	0/0	0/0	3
3	EBCS22E19	EMBEDDED SYSTEMS ARCHITECTURES	Ту	3	0/0	0/0	3
4	EBCS22E20	AGILE SOFTWARE DEVELOPMENT	Ту	3	0/0	0/0	3
5	EBCS22E21	AUTOMATION	Ту	3	0/0	0/0	3
6	EBCS22E22	SOCIAL COMPUTING	Ту	3	0/0	0/0	3
7	EBCS22E23	ENTERPRISE ARCHITECTURE	Ту	3	0/0	0/0	3
8	EBCS22E24	NETWORK FORENSICS	Ту	3	0/0	0/0	3
9	EBCS22E25	DISTRIBUTED COMPUTING	Ту	3	0/0	0/0	3

		PROGRAM ELECT	IVE –IV &	\mathbf{V}			
S.NO.	COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/ S.Lr	P/R	С
1	EBCS22E26	EDGE COMPUTING	TY	3	0/0	0/0	3
2	EBCS22E27	CYBER PHYSICAL SYSTEMS	TY	3	0/0	0/0	3
3	EBCS22E28	FOUNDATIONS OF PARALLEL PROGRAMMING	TY	3	0/0	0/0	3
4	EBCS22E29	VIRTUALIZATION	TY	3	0/0	0/0	3
5	EBCS22E30	DATA MODERNIZATION ANALYSIS	TY	3	0/0	0/0	3
6	EBCS22E31	ROBOTICS	TY	3	0/0	0/0	3
7	EBCS22E32	DEEP LEARNING TECHNIQUES	TY	3	0/0	0/0	3
8	EBCS22E33	ENTERPRISE RESOURCE PLANNING	TY	3	0/0	0/0	3
9	EBCS22E34	QUANTUM COMPUTING	TY	3	0/0	0/0	3
10	EBCS22E35	SOCIAL NETWORK ANALYSIS	TY	3	0/0	0/0	3
11	EBCS22E36	NEURO FUZZY COMPUTING	TY	3	0/0	0/0	3
12	EBCS22E37	AUGMENTED AND VIRTUAL REALITY	TY	3	0/0	0/0	3
13	EBCS22E38	BLOCKCHAIN	TY	3	0/0	0/0	3
14	EBCS22E39	M-COMMERCE	TY	3	0/0	0/0	3
15	EBCS22E40	REAL TIME SYSTEMS	TY	3	0/0	0/0	3
16	EBCS22E41	OPTIMIZATION TECHNIQUES	TY	3	0/0	0/0	3
17	EBCS22E42	NATURAL LANGUAGE PROCESSING	TY	3	0/0	0/0	3

OPEN ELECTIVES OFFERED FOR CSE STUDENTS

ELECTRONICS AND COMMUNICATION ENGINEERING

S.NO	COURSE CODE	COURSE NAME	Ty/Lb/E	L	T/S	P/R	C
			TL/IE		Lr		
1	EBEC22OE1	Internet of Things and its Applications	Ty	3	0/0	0/0	3
2	EBEC22OE2	Cellular Mobile communication	Ту	3	0/0	0/0	3
3	EBEC22OE3	Satellite and its Applications	Ty	3	0/0	0/0	3
4	EBEC22OE4	Fundamentals of Sensors	Ty	3	0/0	0/0	3
5	EBEC22OE5	Microprocessor Based System	Ту	3	0/0	0/0	3
		Design					
6	EBEC22OE6	Industry 4.0 Concepts	Ty	3	0/0	0/0	3

ELECTRICAL AND ELECTRONICS ENGINEERING

S.NO	COURSE CODE	COURSE NAME	Ty/Lb/	L	T/S	P/R	C
			ETL/IE		Lr		
1	EBEE22OE1	Electrical Safety for Engineers	Ty	3	0/0	0/0	3
2	EBEE22OE2	Energy Conservation Techniques	Ty	3	0/0	0/0	3
3	EBEE22OE3	Electric Vehicle Technology	Ty	3	0/0	0/0	3
4	EBEE22OE4	Biomedical Instrumentation	Ty	3	0/0	0/0	3
5	EBEE22OE5	Industrial Instrumentation	Ty	3	0/0	0/0	3
6	EBEE22OE6	Solar Energy Conversion System	Ty	3	0/0	0/0	3
7	EBEE22OE7	Wind Energy Conversion System	Ty	3	0/0	0/0	3
8	EBEE22OE8	Energy Storage Technology	Ty	3	0/0	0/0	3
9	EBEE22OE9	Electrical Machines	Ту	3	0/0	0/0	3

MECHANICAL ENGINEERING

S.NO	COURSE CODE	COURSE NAME	Ty/Lb/E	L	T/S	P/R	C
			TL/IE		Lr		
1	EBME22OE1	Industrial Engineering	Ty	3	0/0	0/0	3
2	EBME22OE2	Refrigeration and Air conditioning	Ty	3	0/0	0/0	3
3	EBME22OE3	Automobile Engineering	Ty	3	0/0	0/0	3
4	EBME22OE4	Industrial Robotics	Ty	3	0/0	0/0	3
5	EBME22OE5	Sustainable Energy	Ty	3	0/0	0/0	3
6	EBME22OE6	Composite Materials	Ty	3	0/0	0/0	3
7	EBME22OE7	Industry 4.0	Ty	3	0/0	0/0	3
8	EBME22OE8	Virtual and Augmented Reality	Ty	3	0/0	0/0	3

CIVIL ENGINEERING

S.NO	COURSE CODE	COURSE NAME	Ty/Lb/E	L	T/S	P/R	C
			TL/IE		Lr		
1	EBCE22OE1	Water Pollution and Its management	Ту	3	0/0	0/0	3
2	EBCE22OE2	Air Pollution Control	Ty	3	0/0	0/0	3
3	EBCE22OE3	Green Building and Vastu Concepts	Ty	3	0/0	0/0	3
4	EBCE22OE4	Climate Change and Sustainable	Ty	3	0/0	0/0	3
		Development					
5	EBCE22OE5	Intelligent Transportation Systems	Ty	3	0/0	0/0	3
6	EBCE22OE6	Environment, Health and Safety in	Ту	3	0/0	0/0	3
		Industries					
7	EBCE22OE7	Industrial Pollution Prevention and	Ty	3	0/0	0/0	3
		Cleaner Production					
8	EBCE22OE8	Fundamentals of nanoscience	Ту	3	0/0	0/0	3

BIOTECHNOLOGY

S.NO	COURSE CODE	COURSE NAME	Ty/Lb/E TL/IE	L	T/S Lr	P/R	С
1	EBBT22OE1	Food and Nutrition	Ту	3	0/0	0/0	3
2	EBBT22OE2	Human Physiology	Ту	3	0/0	0/0	3
3	EBBT22OE3	Clinical Biochemistry	Ту	3	0/0	0/0	3
4	EBBT22OE4	Bioprocess Principles	Ty	3	0/0	0/0	3
5	EBBT22OE5	Biosensors and Biomedical Devices in Diagnostics	Ту	3	0/0	0/0	3
6	EBBT22OE6	Basic Bioinformatics	Ty	3	0/0	0/0	3

CHEMICAL ENGINEERING

S.NO	COURSE CODE	COURSE NAME	Ty/Lb/E TL/IE	L	T/S Lr	P/R	С
1	EBCT22OE1	Fundamentals of Nanoscience	Ту	3	0/0	0/0	3
2	EBCT22OE2	Electrochemical Engineering	Ту	3	0/0	0/0	3
3	EBCT22OE3	Alternative Fuels And Energy System	Ту	3	0/0	0/0	3
4	EBCT22OE4	Petrochemical Unit Processes	Ту	3	0/0	0/0	3
5	EBCT22OE5	Principles of Desalination Technologies	Ту	3	0/0	0/0	3
6	EBCT22OE6	Piping Design Engineering	Ту	3	0/0	0/0	3
7	EBCT22OE7	E- Waste Management	Ty	3	0/0	0/0	3

Dr APJ Abdul Kalam Center For Research

S.NO	COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/SLr	P/R	С
1	EBMG22OE1	Technical Entrepreneurship	Ty	3	0/0	0/0	3

OPEN LAB OFFERED FOR CSE STUDENTS ELECTRONICS AND COMMUNICATION ENGINEERING

S	S.NO	COURSE CODE	COURSE NAME	Ty/Lb/E	L	T/SLr	P/R	C
				TL/IE				
	1	EBEC22OL1	Sensors and IoT Lab	Lb	0	0/0	3/0	1
	2	EBEC22OL2	Robotics Control Lab	Lb	0	0/0	3/0	1
	3	EBEC22OL3	Basics of MATLAB	Lb	0	0/0	3/0	1

ELECTRICAL AND ELECTRONICS ENGINEERING

S.NO	COURSE CODE	COURSE NAME	Ty/Lb/	L	T/SLr	P/R	C
			ETL/IE				
1	EBEE22OL1	Transducer Lab	Lb	0	0/0	3/0	1
2	EBEE22OL2	PLC and SCADA Lab	Lb	0	0/0	3/0	1
3	EBEE22OL3	Electrical Maintenance Lab	Lb	0	0/0	3/0	1
4	EBEE22OL4	Power Electronics Lab	Lb	0	0/0	3/0	1
5	EBEE22OL5	Bio Medical Instrumentation Lab	Lb	0	0/0	3/0	1
6	EBEE22OL6	Electrical Machines Lab	Lb	0	0/0	3/0	1

MECHANICAL ENGINEERING

S.NO	COURSE CODE	COURSE NAME Ty/Lb/		L	T/SLr	P/R	C
			ETL/IE				
1	EBME22OL1	Internal Combustion	Lb	0	0/0	3/0	1
		Engines and Steam					
		Lab					
2	EBME22OL2	ComputerAidedDesign and	Lb	0	0/0	3/0	1
		Simulation Lab					
3	EBME22OL3	Engineering	Lb	0	0/0	3/0	1
		Metrology Lab					
4	EBME22OL4	Automation Lab	Lb	0	0/0	3/0	1
5	EBME22OL5	Virtual and	Lb	0	0/0	3/0	1
		Augmented					
		Reality Lab					

CIVIL ENGINEERING

S.NO	COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/SLr	P/R	C
1	EBCE22OL1	Building Drawing Practice using Auto CADD	Lb	0	0/0	3/0	1
2	EBCE22OL2	Geographical Information System And Mapping Lab	Lb	0	0/0	3/0	1
3	EBCE22OL3	Environmental Engineering Laboratory	Lb	0	0/0	3/0	1

BIOTECHNOLOGY

S.NO	COURSE CODE	COURSE NAME	Ty/Lb/	L	T/SL	P/R	C
			ETL/IE		r		
1	EBBT22OL1	Basic Biochemistry Lab	Lb	0	0/0	3/0	1
2	EBBT22OL2	Basic Bioprocess Lab	Lb	0	0/0	3/0	1
3	EBBT22OL3	Basic Microbiology Lab	Lb	0	0/0	3/0	1
4	EBBT22OL4	Basic Bioinformatics Lab	Lb	0	0/0	3/0	1

CHEMICAL ENGINEERING

S.NO	COURSE CODE	COURSE NAME	Ty/Lb/	L	T/S	P/R	C
			ETL/IE		Lr		
1	EBCT22OL1	Chemical Separation Lab	Lb	0	0/0	3/0	1
2	EBCT22OL2	Chemical Composition Analysis Lab	Lb	0	0/0	3/0	1
3	EBCT22OL3	Alternate Fuel Lab	Lb	0	0/0	3/0	1
4	EBCT22OL4	Food Testing Laboratory	Lb	0	0/0	3/0	1

LIST OF OPEN ELECTIVES OFFERED BY CSE DEPARTMENT TO OTHER DEPARTMENT STUDENTS

S.NO	COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/SLr	P/R	C
1	EBCS22OE1	Cyber security and Forensics	Ту	3	0/0	0/0	3
2	EBCS22OE2	Artificial Intelligence	Ту	3	0/0	0/0	3
3	EBCS22OE3	Data Base Concepts	Ту	3	0/0	0/0	3
4	EBCS22OE4	Software Engineering	Ту	3	0/0	0/0	3

LIST OF OPEN LABS OFFERED BY CSE DEPARTMENT TO OTHER DEPARTMENT STUDENTS

S.NO	COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S Lr	P/R	C
1	EBCS22OL1	Artificial Intelligence Lab	Lb	0	0/0	3/0	1
2	EBCS22OL2	PHP/My SQL Programming Lab	Lb	0	0/0	3/0	1
3	EBCS22OL3	Database Lab	Lb	0	0/0	3/0	1

LIST OF FOREIGN LANGUAGES

S.NO	COURSE CODE	COURSE NAME
1	EBFL22I01	FRENCH
2	EBFL22I02	GERMAN
3	EBFL22I03	JAPANESE
4	EBFL22I04	ARABIC
5	EBFL22I05	CHINESE
6	EBFL22I06	RUSSIAN
7	EBFL22I07	SPANISH

Components of Curriculum and Credits Distribution

Course Component	Description	No of courses	Credits	Total	Credit Weightage	Contact Hours
	Theory	6	22			330
Basic Science	Lab	-	-	28	16.87	-
	Etl	2	6			120
Engineering Science	Theory	1	3			60
	Lab	0	0	6	3.61	-
	Etl	1	3			60
Humanities and social science	Theory	3	3			90
	Lab	1	1	4	2.41	30
	Etl	0	0			-
Program core	Theory	15	49			735
	Lab	10	10	72	43.37	450
	Etl	5	13			270
Program Electives	Theory					
	Lab	5	15	15	9.03	225
	Etl					
Open Elective	Theory	2	6	7	4.22	90
	Lab	1	1	/	4.22	45
	Theory	6	13			240
Inter Disciplinary	Lab	3	3	18	10.84	120
	Etl	1	2			45
Skill Component		6	6	6	3.61	195
Project		2	10	10	6.02	90
If others any						
	TOTAL	70	166	166	100	3195

Revision/Modification done in syllabus content

S.No	Course (Subject) Code	Course (Subject) Name	Concept/ topic if any, removed in current curriculum	Concept/topic added in the new curriculum	% of Revision/ Modificat ion done
1	EBCS22002	Data Structures	Unit 2: Tree.	Unit 1-Polynomial Representation and Addition, Generalized Linked List. Unit-2-Dequeue and Priority Queue. Complete Binary Tree, Algebraic Expressions, Extended Binary Trees Unit-3 B- Trees, Heaps. Insertion Sort, Collision Resolution	30
2	EBCS22003	Data Base Management System	Unit 3:QBE - level – Basic Structure – various operations – relational database design – problems in the relational database design	Strategies 2 nd ,3 rd and 5 th unit is updated with new topics	50
3	EBCS22004	Design and analysis of Algorithms	design	Unit 5 Hamiltonian Circuit Problem – Subset Sum Problem-Branch and Bound	
4	EBCS22005	Operating Systems		Unit 4-I/O Systems is added 5 th unit is completely updated	25
5	EBCS22007	Computer Networks		Unit 2 Mobile telephone system –IPV4 and Basics	10
6	EBCS22008	Principles of Compiler Design	Unit 1 &2: System Softwareconcepts	System Software And Principles Of Compiler Design IS Changed AS Principles Of Compiler Design	90
7	EBCS22OE2	Artificial Intelligence		5 th unit entirely updated	30

0	ED CC22012	D' D	TT 1 / 1 / 1 / 1	T . 1 .* .	40
8	EBCS22012	Big Data	Updated the topic-	Introduction to	40
		Analytics	Clustering- k-means	MongoDB, Hive ,Pig	
	ED/C022012			and Cassandra	90
9	EBCS22013	Commonted		Internet of Things	80
		Connected Business		Subject is updated in 2 nd , 3 rd ,4 th units and	
		Dusiness		renamed	
10	EBCS22015		Unit 2: subset	Unit 1-Entirely	40
10	EBC322013		selection – factor	updated	40
			analysis –	Unit 2- Decision Tree	
			multidimensional	based methods for	
			scaling – Isomap	classification and	
		Machine	Unit 4-SVM is shifted	Regression- Ensemble	
		Learning	from 5 th to 4 th unit	methods are included	
		Learning	nom 5 to 4 unit	Unit 3- Dimensionality	
				Reduction - Principal	
				Component Analysis -	
				Probabilistic PCA	
				topics are included	
11	EBCS22L01		Unit 3: Dequeue,	Unit-5 ADT based	30
			circular-operations	programs are added	
		Data Structures		Included (bubble sort,	
		Lab		insertion sort, shell sort	
				programs	
12	EBCS22LO2	DDITC:		New Experiments for	40
		DBMS Lab		SQL Queries added	40
13	EBCS22L03	Design and	3 programs are	2 new programs are	
		analysis of	removed	added	25
		Algorithms Lab			
14	EBCS22L04		Unit3:	Unit 5-Inter-process	30
		Operating	Implementation of	communication	
		System lab	Deadlock Detection	between related	
			Algorithm programs	processes using pipes.	
			are added		10
			3 programs were		10
			removed a)Design a TCP concurrent server		
			to echo given set of		
			sentences using poll functions. b)		
			Implement		
			Concurrent Time		
15	EBCS22L05	Network	Server application		
13		Programming	using UDP to execute		
		Lab	the program at remote		
			server.		
			c)Client sends a time		
			request to the server;		
			server sends its		
			system time back to		
			the client. Client		
			displays the result.		

16	EBCS22L06	Compiler Design LAB		Lexical Analyzer using "C" program id removed	20
17	EBCS22L07	OOSE Lab	Student Result Management System Course Registration System	Payroll processing application Hotel Management System E-Ticketing	40
18	EBCS22L0 9	Data Analytics Lab using Machine Learning Algorithm	New subject		100
19	EBCS22L08	Web Technologies and web Services& PHP& MySQL Lab		Web Technology lab is combined with php and introduced as a new lab	90
20	EBCS22E01	Image Processing		-Imaging geometry - 2D Transformations- DFT, DCT, KLT and SVD topics are removed -New unit as IMAGE SEGMENTATION is added -Object Recognition is added with the unit Image Compression	40
21	EBCS22E02	Geographical Information Systems		Unit 1-History of GIS - Components of a GIS - Hardware, Software, Data, People, Methods - Proprietary and open source Software - Types of data - Spatial, Attribute data- types of attributes Unit 2-GIS Model and Modelling 5 th unit completely updated newly	40
22	EBCS22E03	Database Tuning		Unit 5-Interface and Connectivity Tuning	30

23	EBCS22E 05			Unit 4-	25
				Ethical, Social, Political	
				issues in E-Commerce	
		E C		Unit 5-Business model	
		E-Commerce		of any E-commerce	
				website Mini project	
				develop E-Commerce	
				projects	
24	EBCS22E07		Wireless and Mobile	projects	85
2-	LBC522L07		Networking Networking		03
25	EBCS22E08	5 G Networks	4G topics	4G topics are is	100
23	EBC322EU8	3 G Networks	4G topics		100
26	ED CG10E11		77 1 . 1	replaced with 5G	
26	EBCS18E11		Updated the	Foundations of modern	
		Cryptography	SYMMETRIC KEY	cryptography: perfect	
		and Network	CIPHERS: topic and	security – information	40
		Security	Cryptographic Data	theory – product	40
		Security	Integrity Algorithms	cryptosystem –	
			topic	cryptanalysis.	
27	EBCS22E12	Mobile Adhoc	<u> </u>	Entire syllabus is	00
		Networks		reworked	80
28	EBCS22E13		Unit 5: Loopback		
20	LDC522L13	Network	interfaces	operation-Using	
		Infrastructure	Standard Access	EIGRP to support large	40
		Management		network	
20	ED CGOOF 15	D . 1	List,VTY	cth 1 1	2.5
29	EBCS22E15	Database		5 th unit completely	25
		Security		changed	
30	EBCS22E18	Data Science		New Subject	100
31	EBCS22E22	Social		New Subject	100
		Computing		riew Bubject	
32	EBCS22E34	Quantum		Naw Subject	100
		Computing		New Subject	100
33	EBCS22E27	Cyber Physical			100
		Systems		New Subject	100
34	EBCS22E28	Foundations of		. 1 1 1	
	LDC522L20	Parallel		1^{st} 2^{nd} , 3^{rd} , 4^{th} units are	80
		Programming		updated	00
25	EDCCOOEOO	1 Togramming		1 st and 5 th unit is	
35	EBCS22E29	Virtualization			40
2.5	ED CGGGGGG			updated	
36	EBCS22E30	Data		Business Intelligence	90
		Modernization		Subject is updated and	
		Analysis		renamed	
37	EBCS22E32	Deep Learning		New subject	100
		Techniques			
38	EBCS22E33		Unit 3:Overview of	Unit 2 Conceptual	25
			enterprise systems	Model of ERP	
		Enterprise	1 7		
		Resource	Issues to be consider		
		Planning	in planning design		
		1 mining	and implementation		
			of cross functional		

39 40 41 42	EBCS22E35 EBCS22E37 EBCS22E38 EBCS22E39	Social Network Analysis Augmented And Virtual Reality Blockchain	integrated ERP systems Unit-5 ERP Marketplace and Marketplace Dynamics:	New Subject New Subject New Subject Unit 1-Intranet And	100
40	EBCS22E37 EBCS22E38	Analysis Augmented And Virtual Reality	Unit-5 ERP Marketplace and Marketplace	New Subject New Subject	100
40	EBCS22E37 EBCS22E38	Analysis Augmented And Virtual Reality	Marketplace and Marketplace	New Subject New Subject	100
40	EBCS22E37 EBCS22E38	Analysis Augmented And Virtual Reality	Marketplace	New Subject New Subject	100
40	EBCS22E37 EBCS22E38	Analysis Augmented And Virtual Reality	_	New Subject New Subject	100
40	EBCS22E37 EBCS22E38	Analysis Augmented And Virtual Reality		New Subject New Subject	100
40	EBCS22E37 EBCS22E38	Analysis Augmented And Virtual Reality		New Subject New Subject	100
41	EBCS22E38	Augmented And Virtual Reality		New Subject	
41	EBCS22E38	Virtual Reality		New Subject	
		•			100
					100
.2	25 (S 22 25)				100
				Extranets – Web Based	
			1	Tools For E-commerce	
				– Security.	
				20001117.	
				Unit 3-The Impact Of	
			NAME D	Technology Advances	
		M-Commerce	NTT Docomo's I-	On Strategy	40
			Mode	Formulation In Mobile	
				Communications	
				Networks.	
				Unit-5Case Studies in	
				implementing mobile	
				commerce	
43	EBCS22E40	Real Time		3 rd unit is completely	30
		Systems		changed	
44	EBCS22E42	Natural		New Subject	100
		Language			
		Processing			
45	EBCS22ET2	Python		New Subject	100
		programming			
46	EBCS22ET4		Unit3:	Unit-4Frame –	
			Java Development kit	Components - working	
			(JDK),Java Runtime	with 2D Shapes	
		Torre	Environment(JRE),	Differences between	
		Java	Application	classes and interfaces	40
		Programming	Programming	and extending	
			Interface (API), Java	\mathcal{E}	
			Virtual Machine		
			(JVM),	classes	
47	EBCS22ET5	Hale	` ''	Note: Human	
	·		NI CII		100
			New Subject-	subject is reworked and	100
		1 1 1 1 1 2 1 1 2 1 1 1	1	renamed	
47	EBCS22ET5	USER EXPERIENCE DESIGN	New Subject-	Note: Human Computer Interaction subject is reworked and	100

List of New courses/value added courses//life skills/Electives/interdisciplinary /courses focusing on employability/entrepreneurship/skill development

S.No	New courses	Value added courses	Life skill/ ETL	Electives	Inter Disciplinary	Focus on employability/ Entrepreneurship / skill development.
1	C Programming and MS Office Tools	Technical Skill I	C Programming and MS Office Tools	Total number of program Electives: 42 (as given in the curriculum)	Digital Principles And System Design	Technical Skill I
2	Fundamentals of Computer Engineering	Technical Skill II	Python Programming	Total number of Open Electives(Theory & Lab): 71 (as given in the curriculum)	Basic Electrical Engineering	Technical Skill II
3	Web Design using php&MySQL	Technical Skill	Object Oriented Programming With C++		Digital Systems Lab	Technical Skill III
4	Web Design using php&MySQL Lab	Universal human values : Understanding harmony	JAVA Programming		Microprocessor And Microcontrollers	Mini Project/ Internship
5	Artificial Intelligence	Soft Skill I - Employability Skills	User Experience Design		Microprocessor And Microcontrollers Lab	Project Phase – 1
6	Big Data Analytics	Soft Skill II - Qualitative And Quantitative Skills	Soft Skill I - Employability Skills		Online Course (NPTEL/SWAY AM /Any MOOC approved by AICTE/UGC)	Project Phase – II
7	Connected Business		Soft Skill II - Qualitative And Quantitative Skills		Principles of Management and Behavioral Science	
8	Cloud Computing		Universal human values: Understanding harmony			
9	Machine learning		Foreign Language			
10	Data Analytics Lab using Machine Learning Algorithm		The Indian Constitution/ The Indian Traditional Knowledge			
11	Cloud computing Lab					

I SEMESTER

COURSE CODE	COURSE NAME : TECHNICAL ENGLISH	Ty/Lb/ ETL/IE	L	T/SLr	P/R	С
EBEN22001	Prerequisite : Pass in Plus 2 English	Ту	2	0/0	0/0	2

C: Credits, L: Lecture, T: Tutorial, SLr: Supervised Learning, P: Problem / Practical

R: Research, Ty/Lb/ETL/IE: Theory /Lab/Embedded Theory and Lab/Internal Evaluation

OBJECTIVES:

The students should be made to

To refresh and stimulate students' English learning through Content Integrated Language Learning to have an in-depth understanding of the components of English language and its use in communication that they are competent in inter-personal and academic communication for a successful career.

COURSI	E OUTCOMES (Cos): Students will be able to
CO1	Refresh and stimulate their English learning through Content Integrated Language Learningming
CO2	Have an in-depth understanding of the components of English language and its use in communication.
CO3	Strengthen their vocabulary and syntactic knowledge for use in academic and technical communication
CO4	Learn to negotiate meaning in inter-personal and academic communication for a successful career
CO5	Engage in organized academic and professional writing for life-long learning and research

Mapping of Course Outcome with Program Outcome (POs)

Cos/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1		1	1	3	1	1	2	3	3	1	3
CO2		1		2	3	2	1	1	3	3		3
CO3	1	1	1	1	2	1		2	3	3	1	3
CO4	1	2	1	1	3		1		2	2	1	2
CO5	1	2	1		2	1		1	3	3	1	3
COs/PSOs	ı	PSO	1	•	PSO2			PSO3	1	PS	SO4	
CO1			1									
CO2			1									
CO3			1			1					2	
CO4												
CO5									1		1	
3/2/1 Indicat	tes Strer	eth Of C	Correlati	on. 3 –	High, 2-	Mediun	1. 1- Lov	W				

Category	Basic Science	Engineering Science	Humanities and <a>social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/ S.Lr	P/R	C
EBEN22001	TECHNICAL ENGLISH	Ту	2	0/0	0/0	2

Unit I Vocabulary Development:

6Hrs

Affixes: prefixes and suffixes and word formation—synonyms and antonyms-nominal compounds, expanding using numbers and approximation - preposition, prepositional phrases, preposition + relative pronounadjective: degrees of comparison, formation of adjectives, irregular comparatives- Infinitive and Gerunds

Unit II Grammar 6 Hrs

Tenses- auxiliary and modal –voice: active, passive and impersonal passive - Questions: Wh-pattern, Yes/no questions, tag questions – adverbs and adverbial clauses- 'If' clause, 'cause and effect', 'purpose'- Concord: subject-verb agreement

Unit III Reading 6 Hrs

Comprehension: extracting relevant information from the text, by skimming and scanning and inferring, identifying lexical and contextual meaning for specific information, identifying the topic sentence and its role in each paragraph, comprehension exercises - Note - making - Précis writing-instructions, suggestions and recommendations.

Unit IV Writing 6 Hrs

Jumbled sentences - paragraph writing coherence devices- discourse markers. Essay writing- Letter writing, Informal and formal: seeking permission to undergo practical training, letter to an editor of a newspaper complaining about civic problems and suggesting suitable solutions

Unit V Visual Aids in Communication

6Hrs

Interpretation of diagrams - tables, flow charts, pie charts and bar charts, and their use in Business reports

Total Hours: 30

Text book:

Panorama_: Content Integrated Language Learning for Engineers, M. ChandrasenaRajeswaran&R.Pushkala,, Vijay Nicole Imprints Pvt. Ltd., Chennai

References:

- 1. Bhatnagar & Bhatnagar, Communicative English for Engineers and Professionals, Pearson
- 2. Wren and Martin: Grammar and Composition, Chand & Co, 2006
- 3. https://learnenglish.britishcouncil.org
- 4. www.better-english.com/grammar/preposition.

COURSE CODE	COURSE NAME: MATHEMATICS-I	Ty/Lb/ ETL/IE	L	T/SLr	P/R	С
EBMA22001	Prerequisite: Higher secondary Mathematics	Ту	3	1/0	0/0	4

C: Credits, L: Lecture, T: Tutorial, SLr: Supervised Learning, P: Problem / Practical R: Research, Ty/Lb/ETL/IE: Theory /Lab/Embedded Theory and Lab/Internal Evaluation

OBJECTIVES:

The students should be made to

• Apply the Basic concepts in Algebra

• 1	 Use the Basic concepts in Matrices Identify and solve problems in Trigonometry Understand the Basic concepts in Differentiation 													
		•				_	•							
	Apply the Basic concepts in Functions of Several variables COLUMN													
COURS	COURSE OUTCOMES (Cos): Students will be able to CO1 Find the summation of given series of binomial, exponential and logarithmic													
CO1	Fir	nd the su	ımmatio	n of giv	en series	of binor	nial, exp	onential	and lo	ogari	thmic			
CO2	Tra	ansform	a non-d	iagonal	matrix ir	ito an eq	uivalent	diagona	ıl matri	x us	ing ortho	ogonal tra	nsformat	ion
CO3	Fir	nd the ex	kpansion	of trigo	nometri	functio	n into an	infinite	series	and	separate	real and	imaginar	y parts
CO4	Fir	nd the m	axima a	nd mini	ma of the	given f	unction							
CO5	Ev	Evaluate the partial/total differentiation and maxima/minima of function of several variable												
		of Course Outcome with Program Outcome (POs)												
Cos/POs		PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12												
CO1		3 3 2 2 1 2 2 3 3 1 3												
CO2		3 3 1 2 3 2 1 2 3 1 2 3												
CO3		3 3 1 2 2 3 1 1 2 3 2 1												
CO4		3	2	2	2	1	2	2	7	2	2	3	2	2
CO5		3	3	1	2	1	1	2		1	2	2	1	3
COs/PSOs			PSO	1		PSO2			PSO	3		PSO	04	
CO1				2			3				1		2	
CO2				2			3				1		2	
CO3				2			3				1		2	
CO4				2			3				1		2	
CO5									<u> </u>		1		2	
3/2/1 Ind	dicates Strength Of Correlation, 3 –High, 2- Medium, 1- Low													
Category	Category -Basic Science Engineering Science Humanities and			Humanities and social Science	Program Core	Program	elective	Open Elective Inter Disciplinary			Skill Component	•	Practical /Project	
		٧												

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/ S.Lr	P/R	C
EBMA22001	MATHEMATICS – I	Ту	3	1/0	0/0	4

UNIT I ALGEBRA 12Hrs

Binomial, Exponential, Logarithmic Series (without proof of theorems) – Problems on Summation, Approximation and Coefficients.

UNIT II MATRICES 12Hrs

Characteristic equation – Eigen values and Eigen vectors of a real matrix – Properties of Eigen values – Cayley - Hamilton theorem(without proof) – Orthogonal reduction of a symmetric matrix to Diagonal form.

UNIT III TRIGONOMETRY 12Hrs

Expansions of Sin $n\theta$, Cos $n\theta$ in powers of Sin θ and Cos θ -Expansion of Tan $n\theta$ - Expansions of Sin $^n\theta$ and Cos $^n\theta$ in terms of Sines and Cosines of multiples of θ - Hyperbolic functions – Separation into real and imaginary parts.

UNIT IV DIFFERENTIATION 12Hrs

Basic concepts of Differentiation –Elementary differentiation methods –Parametric functions – Implicit function –Leibnitz theorem (without proof) – Maxima and Minima – Points of inflection.

UNIT V FUNCTIONS OF SEVERAL VARIABLES 12Hrs

Partial derivatives – Total differential – Differentiation of implicit functions – Taylor's expansion – Maxima and Minima by Lagrange's Method of undetermined multipliers – Jacobians.

Total Hours: 60

Text & Reference Books:

- 1) Kreyszig E., Advanced Engineering Mathematics (10th ed.), John Wiley & Sons, (2011).
- 2) Grewal B.S., Higher Engineering Mathematics, Khanna Publishers, (2012).
- 3) John Bird, Basic Engineering Mathematics (5th ed.), Elsevier Ltd, (2010).
- 4) Veerarajan T., Engineering Mathematics (for first year), Tata McGraw Hill Publishing Co., (2008).
- 5) P.Kandasamy, K.Thilagavathy and K. Gunavathy, *Engineering Mathematics Vol. I (4th Revised ed.)*,S.Chand& Co., Publishers, New Delhi (2000).
- **6**) sJohn Bird, *Higher Engineering Mathematics* (5th ed.), Elsevier Ltd, (2006).

COURSE CODE	COURSE NAME: ENGINEERING PHYSICS	Ty/Lb/ ETL/IE	L	T/SLr	P/R	С
EBPH22ET1	Prerequisite: Higher Sec. Physics	ETL	2	0/0	2/0	3

C: Credits, L: Lecture, T: Tutorial, SLr: Supervised Learning, P: Problem / Practical

R: Research, Ty/Lb/ETL/IE: Theory /Lab/Embedded Theory and Lab/Internal Evaluation

OBJECTIVES:

The students should be made to:

- Outline the relation between Science, Engineering & Technology.

• A	Арр Го io Prod	ly funda dentify luce ar	amenta & solve	l laws o	in under of Physic ems usin ctivities	cs in En	gineeri	ng & cepts.	Tec	hnolo		ugh effe	ective	technical
COURS		municat UTCON		cos): Stu	ıdents w	ill be ab	ole to							
CO1	D	emonstr	ate cor	npeten	cy in un	derstand	ling ba	sic co	ncep	ots.				
CO2					nods fo							strate co	ompeten	cy with
CO3	Id	Identify and provide solutions for engineering problems.												
CO4	Re	Relate the technical concepts to day to day life and to practical situations.												
CO5	Tł	nink ana	alytical	ly to in	terpret c	oncepts	i.							
Mapping	g of	Course				m Outco								
Cos/POs	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12													
CO1		3	3	1	2	2	2	1			1	2		1
CO2		3	3	2	2	2	2	1			2	2	1	1
CO3		3	3	3	2	2	2	1		1	1	2	1	2
CO4		3	3	2	2	1	2	2		1	2	2	1	2
CO5		3	3	2	1	1	2	1		2	1	2	1	1
COs/PSOs			PSO			PSO2			PS	O3		PSC	04	
CO1				3			3							
CO2				3			2							
CO3				3			2				1			
CO4				3			2				1		1	
CO5				3			1				1		1	
3/2/1 Ind	icat	es Streng	gth Of C	Correlati	ion, $3 - I$	High, 2-	Mediun	n, 1- I	OW					
Category	Category Basic Science		Engineering	Science	Humanities and social Science	Program Core	Program	elective	Open Elective	Inter	Disciplinary	Skill Component		Practical Project
				- 4								1 31 0		

Prograı	Prograi elective	Open E	Inter Discipl	Skill Compo	Practic: /Projec

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/ S.Lr	P/R	С
EBPH22ET1	ENGINEERING PHYSICS	ETL	2	0/0	2/0	3

UNIT I PROPERTIES OF MATTER

12Hrs

Elasticity - stress, strain and Hook's law - Poisson's ratio - three moduli of elasticity - twisting couple on a wire - Shafts - Solid & Hollow Shafts - Bending moment - Youngs Modulus Determination by non uniform bending -I form of girders.

viscosity - flow of liquid through a narrow tube: Poiseuille's law (Qualitative)- Ostwald's viscometer - LubricationLab Component - 1. Coefficient of Viscosity determination using Poiseuille's Method

UNIT II ACOUSTICS & ULTRASONICS

12Hrs

Fundamentals of acoustics - reverberation- reverberation time - factors affecting acoustics. Ultrasonics -Production of ultrasonic waves - detection of ultrasonic waves+ - acoustic grating - application of ultrasonic waves. **Lab Component – 2. Ultrasonic Velocity Determination**

UNIT III WAVE OPTICS

12Hrs

Huygen's principle - interference of light – wave front splitting and amplitude – air wedge - Newton's rings - Michelson interferometer and its applications - Fraunhofer diffraction from a single slit - diffraction grating **Lab Component – 3. Spectrometer – Grating**

UNIT IV LASER 12Hrs

Laser principle and characteristics - amplification of light by population inversion - properties of laser beams: mono-chromaticity, coherence, directionality and brightness - different types of lasers - Ruby laser-Nd-YAG laser-He-Ne laser-CO₂ laser - semiconductor laser - applications of lasers in science, engineering and medicine. Lab Component – 4. Determination of Wavelength of the given Laser source & Particle size determination

UNIT V FIBER OPTIC COMMUNICATION

12Hrs

Total Internal Reflection – Propagation of Light in Optical Fibers – Numerical aperture and Acceptance Angle – Types of Optical Fibers (material, refractive index, mode) – Fiber Optical Communication system (Block diagram) – Attenuation–Transmitter, Receiver, Dispersion, Modulation/Demodulation Advantages of Fiber Optical Communication System – IMT, PMT, Wavelength Modulated & Polarization Modulated Sensors – Endoscope Applications. Lab Component – 5. Determination of Numerical Aperture of Optical Fiber Total Hours: 60

TEXT BOOKS

- **1.** Brijlal, M. N. Avadhanulu& N. Subrahmanyam, Text Book of Optics, S. Chand Publications, 25th edition, 2012
- 2. R. Murugeshan, Electricity and Magnetism, S.Chand Publications, 10th edition, 2017
- 3. R. Murugeshan & Kiruthiga Sivaprasath, Modern Physics, S.Chand Publications, 2016

REFERENCE BOOKS

- 1. Dr. Senthil Kumar Engineering Physics I VRB Publishers, 2016
- 2. N Subrahmanyam & Brijlal, Waves and Oscillations, Vikas Publications, New Delhi,1988
- 3. N Subrahmanyam & Brijlal, Properties of Matter, S. Chand Co., New Delhi, 1982
- 4. N Subrahmanyam & Brijlal, Text book of Optics, S. Chand Co., New Delhi, 1989
- 5. R. Murugeshan, Electricity and Magnetism, S. Chand & Co., New Delhi, 1995
- 6. Thygarajan K & Ajay Ghatak, Laser Theory and Applications, Macmillan, New Delhi, 1988
- 7. Dr. S. Muthukumaran, Dr.G.Balaji, S.Masilamani PHYSICS LABORATORY I & II by Sri Krishna Hitech Publishing Company Pvt.Ltd.

COURSE CODE	COURSE NAME: ENGINEERING CHEMISTRY	Ty/Lb/ ETL/IE	L	T/SLr	P/R	С
EBCH22ET1	Prerequisite: Higher Sec. Chemistry	ETL	2	0/0	2/0	3

C: Credits, L: Lecture, T: Tutorial, SLr: Supervised Learning, P: Problem / Practical

R: Research, Ty/Lb/ETL/IE: Theory /Lab/Embedded Theory and Lab/Internal Evaluation

OBJECTIVES:

The students should be made to

- 1.To deduce practical application of theoretical concepts
- 2.To provide and insight into fundamental concepts of chemical thermodynamics
- 3.To articulate the water treatment methods
- 4. To impart the knowledge in electrical conductance and EMF

 5. To create awareness about the modern None account in the modern

						omposites on techniq		ith con	cept	s of po	lymers	8					
COURS	SE (OUTCO	MES (C	Cos): St	udents w	rill be abl	le to										
CO1	Ap	ply relev	vant insti	rumenta	tion tech	niques to	solve co	mplex	prol	blems							
CO2	Re	call the f	fundame	ntals an	d demon	strate by	understa	nding	the	first p	rincip	les of	Engi	ineeri	ng scienc	es.	
CO3	Ex	amine th	e approp	priate te	chniques	to interp	ret data	to pro	vide	valid	conclu	sion					
CO4	De	monstra	te the co	llaborat	ion of sci	ence and	Enginee	ring to	rec	ognize	the n	eed fo	r life	long	learning	•	
CO5	An	alyse the	e impact	of conte	xtual kn	owledge t	o access	the hea	alth	and so	ciety i	issues	•				
Mappir	ng o	of Course Outcome with Program Outcome (POs)															
Cos/PO	s	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 3 3 3 3 2 2 3															
CO1		3		3	3	3						2					-
CO2		3	3				3									3	
CO3		3		2	3												
CO4		3	3		3					3						3	
CO5		3					2	3	3	2						3	
COs/PSOs			PSO1		•	PSO2	ı	II.		PSO3			ı	PSC	D4	1	
CO1				2		3											
CO2							3										
CO3				2			3										
CO4							3										
CO5							3										
3/2/1 In	dica	dicates Strength Of Correlation, 3 – High, 2- Medium, 1- Low															
Ç	Category	Basic Science	Engineering	Science	Humanities and social Science	Program Core	Program	elective	Open Elective		Inter Disciplinary	,		Skill Component		Practical	/Project
		V															

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/ S.Lr	P/R	С
EBCH22ET1	ENGINEERING CHEMISTRY	ETL	2	0/0	2/0	3

UNIT -I CHEMICAL THERMODYNAMICS

12Hrs

Introduction, Terminology in thermodynamics –System, Surrounding, State and Path functions, Extensive and intensive properties. Laws of thermodynamics – I and II laws-Need for the II law. Enthalpy, Entropy, Gibbs free energy, Helmholtz free energy - Spontaneity and its criteria. Maxwell relations, Gibbs -Helmholtz equation (relating E & A) and (relating H & G).

UNIT-II TECHNOLOGY OF WATER

12Hrs

Water quality parameters – Definition and expression. Analysis of water – alkalinity, hardness and its determination (EDTA method only). Boiler feed water and Boiler Troubles-Scales and sludges, Caustic embrittlement, Priming and Foaming and Boiler corrosion. Water softening processes – Internal conditioning, external conditioning – Demineralization methods. Desalination processes-RO and Electrodialysis.

Lab Component-1. Analyze the water quality parameters for the given water sample.

UNIT -III ANALYTICAL AND CHARACTERIZATION TECHNIQUES

12Hrs

Chromatographic techniques – column, thin layer and paper. Instrumentation-working with block diagram-UV-Visible Spectroscopy, IR Spectroscopy, Scanning electron microscope, Transmission electron microscope.

Lab Component-2. Determination of Rf values of various components using thin layer chromatography.

3. Compute and interpret the structures of the given molecules using Chem Draw.

UNIT - IV ELECTROCHEMISTRY

12Hrs

Conductance – Types of conductance and its Measurement. Electrodes and electrode potential, Nernst equation – EMF measurement and its applications-Electrochemical series- Types of electrodes- Reference Electrodes-Standard hydrogen electrode- Saturated calomel electrode- Determination of P^H using this electrode.

Lab Component-4. Studies on acid-base conductometric titration.

5. Determination of redox potentials using potentiometry

UNIT - VPOLYMERS AND NANO COMPOSITES

12Hrs

Polymers-Introduction-Monomers – Functionality – Degree of polymerization-Tacticity. Classification-Plastics – Thermoplastics and thermosetting plastics, Compounding of plastics – Compression moulding, injection moulding and extrusion processes. Nano composites: particulates, clay and carbon nano tubes. Graphene nano composites and its applications.

Lab Component-6.Polymeric analysis using capillary viscometer Total Hours: 60

References

- 1. Jain & Jain Engineering Chemistry 17th Edition, Dhanpat Rai Publishing Company
- 2. <u>Vasant R. Gowariker</u>, <u>N. V. Viswanathan</u>, <u>Jayadev Sreedhar</u>, *Polymer Science*, New Age International, 1986
- 3. B.K. Sharma, *Polymer Chemistry*, Goel Publishing House
- 4. Y. R. Sharma , Elementary Organic Spectroscopy, S. Chand& Company Ltd.
- 5. N.Krishnamurthy, K.Jeyasubramanian, P.Vallinayagam, Applied Chemistry, Tata McGraw-Hill Publishing Company Limited, 1999.
- 6.Chichester, polymer-clay-nano composites, Johnwiley (2000)

COURSE CODE	COURSE NAME : BASIC MECHANICAL & CIVIL ENGINEERING	Ty/Lb/ ETL/IE	L	T/SLr	P/R	С
EBME22ET1	Prerequisite : Nil	ETL	2	0/0	2/0	3

C: Credits, L: Lecture, T: Tutorial, SLr: Supervised Learning, P: Problem / Practical

R: Research, Ty/Lb/ETL/IE: Theory /Lab/Embedded Theory and Lab/Internal Evaluation

OBJECTIVES:

The students should be made to

• To understand the fundamentals and applications of IC Engines, power plants, manufacturing processes and mechanics.

• To ex	xpose the	studen	ts to th	e variou	ıs constru	iction m	aterials	and the	eir appli	ications.			
COURSE O	UTCOME	ES (Cos)): Stud	ents will	be able t	0							
CO1	Demons	strate the	e worki	ng princi	iples of po	wer plan	nts, IC E	ngines a	and boile	ers.			
CO2	Utilize t	he conc	ept of n	netals for	rming, joi	ning pro	cess and	apply i	n suitabl	le machii	ning pr	ocess	
CO3	Underst	and the	various	machini	ing proces	s in mac	hine too	1					
CO4	types		_		materials				_		e mix a	nd mas	onry
CO5	Demons	strate ho	w Road	ls, Railw	ays, dams	s, Bridge	s have b	een con	structed				
Mapping of	Course O	utcome	with P	rogram	Outcome	(POs)							
Cos/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		PO11	PO12
CO1	3					2		3	3	3			3
CO2	3				1	2		1	2	2			2
CO3	3	3			1	1		1	2	2			2
CO4	3				1	1			2	2			2
CO5	3				1	1		1	2	2			2
COs/PSOs		PSO	1		PSO2			PSO3			PSO	4	
CO1			1										
CO2													
CO3			1										
CO4									1				
CO5											2		
3/2/1 Indicate	s Strength		relation	ı, 3 – Hig	gh, 2- Med	dium, 1-	Low	1	,				
Category	Basic Science	Engineering Science		Humanities and social Science	Program Core	Program elective		Open Elective	Inter Disciplinary		Skill Component		Practical /Project
			$\sqrt{}$										

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/ S.Lr	P/R	C
EBME22ET1	BASIC MECHANICAL & CIVIL ENGINEERING	ETL	2	0/0	2/0	3

UNIT I THERMAL ENGINEERING

14Hrs

Classification of internal combustion engine – Working of two stroke, four stroke petrol and diesel engines. Classification of Boilers – Cochran boiler – Locomotive boilers – Power plant classification – Working of Thermal and Nuclear power plant- Working of Solar-Wind - Tidal and Geothermal power plants.

Lab component: Study of Boilers and IC engines

UNIT II MANUFACTURING PROCESS

14Hrs

Metal forming processes – Rolling, forging, drawing, extrusion and sheet metal operations- fundamentals only. Metal Joining processes – Welding - arc and gas welding, Soldering and Brazing. Casting process – Patterns - Moulding tools - Types of moulding - Preparation of green sand mould - Operation of Cupola furnace.

Lab component: Sheet metal works, Fitting- Cutting (T, V, L and dovetail joints)

UNIT III MACHINING PROCESS

10Hrs

Basics of metal cutting operations – Working of lathe- parts-Operations performed. Drilling machine – Classification – Radial drilling machine - Twist drill nomenclature. Milling machine-types-different operations performed.

Lab component: Lathe operation: Step turning and Taper turning, Drilling operation- Making hole drilling

UNIT IV BUILDING MATERIALS AND CONSTRUCTION

12Hr

<u>Materials</u>: Brick - Types of Bricks - Test on bricks - Cement – Types, Properties and uses of cement – Steel - Properties and its uses – Ply wood and Plastics.

<u>Construction:</u> Mortar – Ingredients – Uses – Plastering - Types of mortar - Preparation – Uses – Concrete – Types – Grades – Uses – Curing – Introduction to Building Components (foundation to roof) – Masonry – Types of masonry (Bricks & Stones)

Lab component: Carpentry: Joints (Tee halving, Cross Lap, Dovetail Joint)Plumbing works- Pipe connections

UNIT V ROADS, RAILWAYS, BRIDGES & DAMS

10Hrs

 $Roads-Classification\ of\ roads-Components\ in\ roads-Railways\ -Components\ of\ permanent\ way\ and\ their\ function-Bridges-Components\ of\ bridges-Dams-Purpose\ of\ dams-Types\ of\ dams.$

Total Hours: 60

TEXT BOOKS

- 1. S. Bhaskar, S. Sellappan, H.N. Sreekanth, (2002), "Basic Engineering" –Hi-Tech Publications
- 2. K. Venugopal, V. Prabhu Raja, (2013-14), "Basic Mechanical Engineering", Anuradha Publications.
- 3. K.V. Natarajan (2000), Basic Civil Engineering, Dhanalakshmi Publishers
- 4. S.C. Sharma(2002), Basic Civil Engineering, Dhanpat Raj Publications

REFERENCES

- 1. PR.SL. Somasundaram, (2002), "Basic Mechanical Engineering" –, Vikas Publications.
- 2. S.C. Rangawala(2002), Building Material and Construction, S. Chand Publisher

COURSE CODE	COUI	RSE NA	ME:					ı	y/Lb/	L	T /	P	/R	C
EBCS22ET1	CF	PROGR	AMMIN	NG ANI	D MS O	FFICE	TOOLS	S F	TL/IE		S.L	r		
	Prereq	uisite: N	Vil						ETL	1	0/0	2	/0	2
C: Credits, L:	Lecture,	T: Tuto	orial, SI	Lr: Sup	ervised	Learni	ng, P: F	roblen	ı / Practi	cal				
R: Research,		ΓL/IE: Ί	Theory /	/Lab/Er	nbedde	d Theor	y and L	ab/Inte	ernal Eva	luatio	n			
OBJECTIVES														
The students sl														
	programi	-												
	roblem so	_	•		l. 1									
	rograms i					onte and	nroconte	otione w	ith office	outom	otion	tools		
COURSE OU							presenta	mons w	Tui office	autom	ation	toois.		
CO1							s writte	n in C 1	anguage.					
CO2	Write	the C co	de for a	given al	lgorithm	l.								
CO3	Apply	Arrays	and Fun	ctions co	oncepts	to write	Progran	1S						
CO4		Structur												
CO5								present	ation skil	ls				
Mapping of Co														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	10	PO11	PC)12
CO1	2	2	2	2	1	1	1	1	1	1		2		2
CO2	2	2	2	2	1	1	1	1	1	1		2		2
CO3	2	2	3	2	1	1	1	1	1	1		3		2
CO4	2	2	3	3	1	1	1	1	1	1		3		2
CO5	1	1	1	1	1	1			2	3		2	├	
COs / PSOs		PSO1			PSO2			PSC)3		PSO4	1	<u> </u>	
CO1		3			3			2			1			
CO2		3			3			2			1			
CO3		3			3			2			1			
CO4		3			2			2			1			
CO5		2			2			0			0			
3/2/1 Indicates	Strengtl	of Co	rrelatio	n, 3 – H	igh, 2- I	Medium	, 1- Lov	v						
			75		/e		ury	nent	ct					
>	ıce	5n	anc ace	ore	ectiv	ive	olina	rodu	roje					
۲,	ler.	ring	ties	ı Ç	n el	lect	sciţ	Con	11 /P					
ĬŎ,	- 63		·		=		- -		ಡ		1		1	
ategor	c Sc	nee	nan al S	ra	ra	n I	\Box		tic					
Category	Basic Science	Engineering Science	Humanities and social Science	✓ Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project					

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/ S.Lr	P/R	С
EBCS22ET1	C PROGRAMMING AND MS OFFICE TOOLS	ETL	1	0/0	2/0	2

UNIT I Introduction 3 Hrs

Basic Structure of C programme- Constants, Variables and data types, Keywords, Identifiers- Operators and expressions- executing a C Program

UNIT II Decision making statements and looping statements

3Hrs

Decision making with if statement, Simple if statement, else-if statement, Nesting if-else statement, The else if ladder, The switch statement, The goto statement, The while statement, The do while statement, The for statement, jumps in loops

UNIT III Arrays and Functions

3Hrs

Introduction to Arrays- One dimensional arrays, Two dimensional array, and Multidimensional array- Introduction to Functions- calling a function, category of functions- arguments with return values, argument with no return values-parameter passing Mechanism: Call by Value and Call by Reference. Recursion.

UNIT IV Structures & Pointers

3Hrs

3Hrs

Structures definition, giving values to members, Structure initialization, comparison of structure variables, Structure within structures, understanding pointers, accessing the address of the variable, declaring and initializing pointer, accessing a variable through its pointer and arrays

UNIT V Ms-Office

Introduction to MS-Word- Menus- Introduction to MS-Excel: features of MS- Excel, spread sheet/worksheet, parts of MS-excel window, functions in excel sheet, chart, Introduction to MS-Power point

Total Hours: 15

TEXT BOOKS:

- 1. E.Balaguruswamy, Programming in ANSI C
- 2. Padma Reddy ,Computer Concepts & 'C' Programming
- 3. ShobhaHangirke, Computer Application For Business

List of Experiments: C PROGRAMMING

30 Hrs

- 1. Find the factorial of a given positive number using function.
- 2. Calculate X raised to y using function.
- 3. Find GCD and LCM of two given integer numbers using function.
- 4. Find the sum of N natural numbers using function.
- 5. Book information using Structure.
- 6. Student information using Structure.
- 7. Print the address of a variable and its value using Pointer
- 8. Find area and perimeter of a circle
- 9. Check whether the given number is palindrome or not
- 10. Check whether the given number is prime or not
- 11. Calculate sum of the digits of the given number
- 12. Display Fibonacci series up to N terms
- 13. Check whether a given character is alphabetic, numeric or special character
- 14. Count vowels and consonants in a given string
- 15. Find product of two matrices

MS-OFFICE

- 16. Preparing a news letter:
- 17. To prepare a newsletter with borders, two columns text, header and footer and inserting a graphic image and page layout.
- 18. Creating and editing the table
- 19. Printing envelopes and mail merge.
- 20. Using formulas and functions: To prepare a Worksheet showing the monthly sales of a company in different branch offices
- 21. Prepare a Statement for displaying Result of 10 students in 5 subjects

Total Hours: 45

COURSE CODE	COURSE NAME: ORIENTATION TO ENTREPRENEURSHIP & PROJECT LAB	Ty/Lb/ ETL/IE	L	T/SLr	P/R	С
EBCC22I01	Prerequisite : Nil	ΙE	1	0/0	1/0	1

C: Credits, L: Lecture, T: Tutorial, SLr: Supervised Learning, P: Problem / Practical R: Research, Ty/Lb/ETL/IE: Theory /Lab/Embedded Theory and Lab/Internal Evaluation

OBJECTIVES

The students should be made to:

- Understand how entrepreneurship Education transforms individuals into successful leaders.
- Identify individual potential &S have career dreams
- Understand difference between ideas & opportunities
- Identify components & create action plan.

• 1	Use brainstorming in a group to generate ideas.													
COURS	E OU	TCOM	IES (C	Cos): S	tudents v	will be a	ble to							
CO1	Deve	elop a	Busin	ness pla	an & im	prove a	bility to	o reco	ognize	bus	siness o	pportun	ity	
CO2					uild an									
CO3	Artic	culate	an eff	ective	elevato	r pitch.								
CO4	Anal mark	-	ne loca	al marl	ket envi	ronmen	t & den	nonst	rate th	ne al	oility to	find an	attractiv	ve
CO5	Iden	tify th	e requ	iired sl	kills for	entrepr	eneursh	nip &	devel	op				
Mappin	g of Co	ourse (Outco	me wit	h Progr	am Out	come (I	POs)						
Cos/POs	P	O1	PO2	PO3	PO4	PO5	PO6	PO7	P	3C	PO9	PO10	PO11	PO12
CO1			2	2	3	2	2	2			2	2	2	1
CO2		3	2		3	2	3	2		3	3	3	2	2
CO3			2	2	2		3			3	3	3		
CO4			3	2	2	2	2			3	2	2	3	
CO5			2	2	3	2	2	3		3	2	2	3	1
COs/PSOs			PSO	1		PSO2	PSC)3		PSC				
CO1							1						2	
CO2							1						1	
CO3							1						2	
CO4							2				1		2	
CO5 3/2/1 Inc	liantan	Ctuono	th Of	Comple	tion 2	High 2	Madin	1	Low				1	
3/2/1 1110	ncates	Streng	gui Oi '	Correia	111011, 3 –	- riigii, 2	z- Medit	IIII, 1-	LOW					1
Category	Category Basic Science Engineering Science Humanities and social Science				Humanities and social Science	Program Core	Program elective		Open Elective	/Inter Disciplinary		Skill Component		Practical /Project
										1				

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/ S.Lr	P/R	С
EBCC22I01	ORIENTATION TO ENTREPRENEURSHIP & PROJECT LAB	IE	1	0/0	1/0	1

UNIT I CHARACTERISTICS OF A SUCCESSFUL ENTREPRENEUR 3Hrs

Introduction to entrepreneurship education – Myths about entrepreneurship – How has entrepreneurship changed the country – Dream it. Do it - Idea planes - Some success stories – Global Legends – Identify your own heroes.

UNITII ENTREPRENEURIAL STYLE

3Hrs

Entrepreneurial styles – Introduction, concept & Different types - Barrier to Communication – Body language speaks louder than words

UNIT III DESIGN THINKING

3Hrs

Introduction to Design thinking – Myth busters – Design thinking Process - Customer profiling – Wowing your customer – Personal selling – concept & process – show & tell concept – Introduction to the concept of Elevator Pitch

UNIT IV RISK MANAGEMENT

3Hrs

Introduction to risk taking & Resilience – Managing risks (Learning from failures, Myth Buster) – Understanding risks through risk takers – Why do I do? – what do I do?

UNIT V PROJECT

3Hrs

How to choose a topic – basic skill sets necessary to take up a project – creating a prototype – Pitch your project – Project presentation.

IDEA GENERATION, EVALUATION & PROJECT PRESENTATION 15Hrs

Total Hours: 30

Reference Books & Website

- 1. Encyclopedia of Small Business (2011) (e book)
- 2. Oxford Handbook of Entrepreneurship (2014) (e book)
- 3. lms.learnwise.org

II SEMESTER

					II SE	EMES	STER	K						
COURSE	COUF	RSE NA	ME:					Γ	y/Lb/	L	T /	P/R	C	
CODE:								F	TL/IE		S.Lr			
EBMA22003					ATICS-									
		quisite: I							Ty	3	1/0	0/0	4	
C: Credits, L:							_							
R: Research, T		TL/IE:	Theor	y/Lab/	Embed	ded Th	eory ar	nd Lab	Internal	Evalua	ation			
OBJECTIVES														
The students sh														
• To be ab					_	tion								
To undeTo use the						vanetion	7							
• To be ab							5							
• To be ab		•	•	•	-	•	us							
COURSE OUT														
CO1		ate the gi				ethods of	integrat	tion and	to find the	area un	nder cu	rve and th	ne	
CO2						ume and	to chan	ge the or	der of inte	gration				
CO3			-	•				_	ulers diffe	_		n		
CO4											•			
CO5		rind equation of planes, lines and sphere and shortest distance between skew lines Verify green/stokes/gauss divergence theorem												
Mapping of Co	urse O	utcome	s with I	Program	n Outc	omes (P	POs)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	10 P	O11	PO1	
CO1	3	3	2	2	2	2	1	2	2	2		1	3	
CO2	3	3	1	2	2	3	2	2	3	3		2	2	
CO3	3	3	1	2	2	3	1	1	3	3		2	2	
CO4	3	3	2	2	1	2	2	2	2	3		2	2	
CO5	3	3	1	2	2	2	2	1	2	3		1	2	
COs / PSOs		PSO1			PSO2			PSC)3	I	PSO4			
CO1		2			3			1			2			
CO2		2			3			1			2			
CO3		2			3			1			2			
CO4		2			3			1			2			
CO5		2			3			1			2			
3/2/1 Indicates	Strengt	th Of C	orrelat	ion, 3 –	High,	2- Medi	ium, 1-	Low		I		<u> </u>		
Category	-Basic Science	ring	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project					
Cai	-Basi	Enginee Science	Hun	Prog	Prog	Ope	Inte	Ski	Prac					

COURSE CODE	COURSE NAME	Ty/Lb/ ET/IE L	L	T/S.Lr	P/R	С
EBMA22003	MATHEMATICS – II	Ту	3	1/0	0/0	4

UNIT I INTEGRATION

12Hrs

Basic concepts of Integration – Methods of Integration – Integration by substitution – Integration by parts – Definite integrals – Properties of definite integrals – Problems on finding Area and Volume using single integrals (simple problems).

UNIT II MULTIPLE INTEGRALS

12 Hrs

Double integral in Cartesian and Polar Co-ordinates – Change of order of integration – Triple integral in Cartesian Co-ordinates – Spherical Polar Co-ordinates – Change of variables (simple problems).

UNIT III ORDINARY DIFFERENTIAL EQUATIONS

12Hrs

First order differential equations – Second and higher order linear differential equations with constant coefficients and with RHS of the form: e^{ax} , x^n , Sin ax, Cos ax, $e^{ax}f(x)$, x f(x) where f(x) is Sin bx or Cos bx – Differential equations with variable coefficients (Euler's form) (simple problems).

UNIT IV THREE DIMENSIONAL ANALYTICAL GEOMETRY

12 Hrs

Direction Cosines and Ratios – Equation of a straight line – Angle between two lines – Equation of a plane – Co-planar lines – Shortest distance between skew lines – Sphere – Tangent plane.

UNIT V VECTOR CALCULUS

12 Hrs

Scalar and Vector functions – Differentiation – Gradient, Divergence and Curl – Directional derivatives – Irrotational and Solenoidal fields– Line, Surface and Volume integrals – Green's, Stoke's and Gauss divergence theorems (statement only) – Verification.

Total Hours: 60

Reference Books:

- 1) Kreyszig E., Advanced Engineering Mathematics (10th ed.), John Wiley & Sons, (2011).
- 2) Grewal B.S., Higher Engineering Mathematics, Khanna Publishers, (2012).
- 3) John Bird, Basic Engineering Mathematics (5th ed.), Elsevier Ltd, (2010).
- 4) Veerarajan T., Engineering Mathematics (for first year), Tata McGraw Hill Publishing Co., (2008).
- 5) P.Kandasamy, K.Thilagavathy and K. Gunavathy, *Engineering Mathematics Vol. I (4th Revised ed.)*, S.Chand& Co., Publishers, New Delhi (2000).
- **6**) John Bird, *Higher Engineering Mathematics* (5th ed.), Elsevier Ltd, (2006).

COURSE CODE	COURSE NAME: SOLID STATE PHYSICS	Ty/Lb/ ETL/IE	L	T/SLr	P/R	С
EBPH22001	Prerequisite: Engg. Physics	Ty	3	0/0	0/0	3

C: Credits, L: Lecture, T: Tutorial, SLr: Supervised Learning, P: Problem / Practical R: Research, Ty/Lb/ETL/IE: Theory /Lab/Embedded Theory and Lab/Internal Evaluation

OBJECTIVES

The students should be made to

- Design, conduct experiment and analyze data.
- Develop a Scientific attitude at micro and nano scale of materials

				_	of Moderrials to I	-		Techi	nolog	V					
COURS										<i></i>					
CO1	Eı	nable th	e stud	ent to er	nploy th	e classi	cal & q	uantu	m the	ories	& Law	s in gene	ral		
CO2	C	ritically	evalu	ate to bu	ild mod	lels to u	ndersta	nd the	solid	l state	fundan	nentals			
CO3	Fo	ormulate	e & ur	derstan	d the bel	haviour	of solid	state	devi	ces					
CO4	A	rticulate	the p	hysical	propertie	es of co	ndensec	l matt	er						
CO5	In	terpret 1	the rol	e of soli	d state p	hysics i	n the a	dvanc	ed ted	chnol	ogical d	evelopm	ents		
Mapping															
Cos/POs		PO1	PO2	PO3	PO4	PO5	PO6	PO	7 I	PO8	PO9	PO10	PO11	PO12	
CO1		3	3	2	2	2	1	1				2		1	
CO2		3	3	1	2	2	1	1			1	2		1	
CO3		3	3	3											
CO4		3	3	3	3	2	2	1		1	3	2	1	1	
CO5		3	2	2	2	2	1	1		1	2	2	1	1	
COs/PSOs			PSC			PSO2			PS	O3		PSO	O4		
CO1				3			3				1				
CO2				3			3				1				
CO3				2							1		1		
CO4				2			2				2		2		
3/2/1 Ind	icat	ac Stranc	rth Of		on 3 E	Jigh 2 M		1 I /	2007				2		
3/2/1 IIIu	Icau	es suens		Correlati	011, 3 – 1	11g11, 2- 1	Viculuili	, 1- L(JW						
Category	0-0	Basic Science	Engineering Science)	Humanities and social Science	Program Core	Program elective		Open Elective	Inter Disciplinary		Skill Component		Practical /Project	
		$\sqrt{}$													

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/ S.Lr	P/R	C
EBPH22001	SOLID STATE PHYSICS	Ту	3	0/0	0/0	3

UNIT I CRYSTAL STRUCTURE

9Hrs

Space Lattice – Unit cell – Bravais lattice – Lattice planes – Miller indices – Calculation of number of atoms per unit cell – Atomic radius – Coordination number – Packing factor for SC, BCC, FCC and HCP structures – Ceramic Materials & Graphite Structures – Crystal Growth Techniques (Slow Evaporation Method & Melt Growth)

UNIT II CONDUCTORS & SUPER CONDUCTORS 9Hrs

Qualitative analysis of Free electron theory – Electrical & Thermal Conductivity (Derivation) - Fermi energy & its importance – Qualitative analysis of conductors, semiconductors & insulators – Important electrical materials-Superconductors – Transition temperature – BCS theory – Properties of super conductors – Types – Low & High temperature superconductors – AC & DC Josephson effect – SQUIDS, Magnetic Levitation – Applications of super conductors

UNIT III SEMICONDUCTOR PHYSICS 9Hrs

Bonds in Semiconductors – Types – Importance of Germanium & Silicon – Other Commonly Used Semiconducting materials - Carrier concentration in Intrinsic Semiconductors (Electron and Hole Density) – Band Gap Determination – Carrier Transport in Semiconductors – Drift, Mobility and Diffusion – Hall effect – Determination of Hall Coefficient and its Applications – Dilute Magnetic Semiconductors (DMS) & their Applications construction, working and characteristics of semiconductor diode, Zener diode, transistor (n-p-n and p-n-p transistor), Transistor characteristics (CB, CE, CC), JFET (Construction and its characteristics).

UNIT IV MAGNETIC & DIELECTRIC PHYSICS 9Hrs

Magnetic Materials: Types – Comparison of Dia, Para and Ferro Magnetism – Heisenberg's interpretation – Domain theory – Hysteresis – Soft and Hard Magnetic Materials – Application of Magnetic Resonance Imaging – Important Magnetic, Insulating & Ferro electric materials.

Dielectric Materials: Electrical Susceptibility – Dielectric Constant – Concept of Polarization – Frequency and Temperature Dependence of Polarization – Dielectric loss – Dielectric breakdown – Commonly used Dielectric materials and their practical applications.

UNIT V OPTO ELECTRONICS 9Hrs

Properties & Classification of Optical Materials – Absorption in Metals, Insulators & Semiconductors – Composite Materials – Nano Materials – Bio Materials – MEMS – NEMS – LED's – Organic LED's – LCD's – Laser diodes – Photodetectors – Tunneling – Resonant Tunneling Diodes (RTD's) – Carbon Nanotubes – Various Ttypes of Optical Materials with Properties.

Total Hours:45

TEXT BOOKS & REFERENCE BOOKS

- 1. V. Rajendran&Mariakani "Materials Science", Tata McGraw Hill (2004).
- 2. P.K.Palanisamy, "Materials science", Scitech Publication (2002).
- 3. Dr. SenthilKumar, "Engineering Physics II" VRB Publishers (2016).
- 4. V. Arumugam, Materials Science", Anuradha Agencies, (2003 Edition).
- 5. Pillai S.O., "Solid State Physics", New Age International, (2005)

COURSE CODE	COURSE NAME: TECHNICAL CHEMISTRY	Ty/Lb/ ETL/IE	L	T/SLr	P/R	С
EBCH22002	Prerequisite: Engg. Chemistry	Ту	3	0/0	0/0	3

C: Credits, L: Lecture, T: Tutorial, SLr: Supervised Learning, P: Problem / Practical

R: Research, Ty/Lb/ETL/IE: Theory /Lab/Embedded Theory and Lab/Internal Evaluation

OBJECTIVES:

The students should be made to

- 1. Toidentify the application of semiconductors in optics and solar cells.
- 2.To analyze the radical improvement in electrical energy storage devices.
- 3. To understand the degradation of electrical fittings and metallic joints.
- 4. To solve chemical problems by simulation.
- 5.To differentiate the various engineering materials by understanding its properties.

COURSE	OU	JTCOM	ES (Co	s): Stud	lents will	be able	to											
CO1	Par	raphrase	the eng	ineering	knowled	ge by ide	entifying	g prope	r che	mical	l sci	ence tech	nique	e.				
CO2	Int	erpret aj	ppropri	ate solut	ion for co	mplex pi	roblems	by usin	ng me	odern	eng	ineering	and 1	IT to	ols.			
CO3	Ret	trieve an	d show	the desig	gn solutio	ns for saf	fety and	l sustai	nable	deve	lopr	nent.						
CO4	Int	egrate th	e electr	ical and	electronic	concept	ts with 1	professi	onal	ethics	s.							
CO5	Art	ticulate t	he techi	ological	changes	recogniz	ing the	need fo	r life	long l	learı	ning.						
Mapping	of C	Course (Outcom	e with I	Program	Outcon	ne (PO	s)										
Cos/POs		PO1	PO2	PO3	PO4	PO5	PO6	PO	7	РО	8	PO9	РО	10	PO11	PC)12	
CO1		3		2		3												
CO2		3		3	3	3												
CO3		3	3 3 3 3 3 3 3 3															
CO4		3			3 3													
CO5		3		3					3								2	
COs/PSOs				PSO1			PSO2	<u> </u>			P	SO3		P	SO4			
CO1				3			3					2						
CO2				3			3					2						
CO3				3			3					2						
CO4				3			3					2						
CO5				3			3					2						
3/2/1 Indi	cates	s Strengt	th Of Co		n, 3 – Hi	gh, 2- M		1- Lov	V									
Category		Science Science Science Humanities and Social Science				Program Core	Program elective)	Open Elective		Inter Disciplinary		Strill Commonant				Practical /Project	
		V																

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/ S.Lr	P/R	C
EBCH22002	TECHNICAL CHEMISTRY	Ту	3	0/0	0/0	3

UNIT – 1 CHEMISTRY OF SEMICONDUCTORS

9Hrs

Semiconductors – Introduction – holes and electrons-Band theory-properties of semi conductors-Types of semiconductors-Intrinsic-Extrensic semiconductors -Mobility of electrons and Holes -Fermi level in Semiconductors- Industrial application of Semiconductors-Semiconductors in Optics - LEDs, OLEDs, Semiconductors in solar cells- Types - First generation solar cells - Single crystalline and poly crystalline solar cells -Czochralski Process of single crystalline silicon synthesis

UNIT -2 ELECTROCHEMICAL CELLS AND BATTERY TECHNOLOGY

9 Hrs

Electrochemical cells: Galvanic cell (Daniel cell); Batteries: Classification of batteries, primary batteries (dry cells) and secondary batteries -nickel-cadmium, lead-acid battery, Solid state batteries – Lithium battery, Lithium Sulphur battery, Fuel cells.

UNIT-3 DEVICECORROSION

9Hrs

Introduction – chemistry of IC and PCB- causes of corrosion on IC, PC-miniaturization, complex material utilization, production and service factors –environmental contamination (airborne contaminants) - Forms of corrosion – anodic, cathodic corrosion- Electrical Contact and metallic joints degradation- fretting corrosion - corrosion costs – corrosion protection of computer hardware.

UNIT-4 COMPUTATIONAL CHEMISTRY

9Hrs

Introduction, Software tools available for chemistry and its applications, Chem Draw- Designing a Chemical Structure- Shortcuts and Hotkeys on designing a chemical structure, Biopolymer Drawing, Advanced drawing Techniques. Structure Analysis, Creating 3D Models, Estimating and displaying Proton and carbon-13 NMR chemical shifts, Creating TLC Plates to find Rf values, Chem Draw/Excel functions.

UNIT -5 MODERN ENGINEERING MATERIALS FOR ELECTRONIC DEVICES 9Hrs

Alloys and Need for Alloys - Modern Electronic grade alloys-Applications in electrical components, transducers, electromagnetic shielding of computers, telecommunications equipment and rocket motor casings. Thin films-Preparation by the Sol-Gel Method-Application of thin films.

Total Hours: 45

References

- 1. Oleg Roussak & H. D. Gesser, *Applied Chemistry*: A Textbook for Engineers and Technologists, Springer.
- 2. Samuel Glasstone, An Introduction of Electrochemistry, Franklin Classics Trade Press.
- 3. Kharton V.V, Solid state electrochemistry II: Electrodes, interfaces and ceramic membranes, Wiley
- 4. Jain and Jain, *Engineering Chemistry*, Dhanpat Rai Publishing Company.
- 5. Chemdraw 16.0 User Guide ,Perkin Elmer Informatics Inc.
- 6. Rolf E. Hummel, Electronic Properties of Materials, Springer

COURS	E	CO	URSE	NAMI	Ε:		_	y/Lb/	L	T/SLı	•	P/R	С
CODE		EN	GINEE	RING (SRAPHI(CS	E'	ΓL/IE					
EBME2	2001	Pre	requisit	e : Nil			Ty	7	2	0/0	2/0		3
						-		-		oblem / Pa Internal E		1	
•]	lents s To acq To exp	should quire l	knowle	edge in lents in	geomet	ter aide	d draft	ing.					
COURS			,	1									
CO1			concep ndards	ot of En	gineerin	g Graph	ics Tecl	nniques	to draft	letters, Nu	ımbers, D	imension	ing in
CO2			ate the d	_		visualiz	zation a	nd proje	ection sl	kills useful	for conve	eying idea	as in
CO3	Iden	tify ba	asic ske	tching t	techniqu	es of eng	gineerin	g equip	ments				
CO4	Dem	onstra	ate the p	rojecti	ons of Po	oints, Li	nes, Pla	nes and	l Solids.	And			
CO5	Drav	v the s	sectiona	l view	of simpl	e buildir	ng draw	ing.					
Mapping	g of Co	ourse	Outcor	ne witl	h Progra	am Outo	come (P	Os)					
Cos/POs	P	O1	PO2	PO3	PO4	PO5	PO6	PO7	PO	8 PO9	PO10	PO11	PO12
CO1	3		3	3	2	2	2			3	3		3
CO2	3		3	3	2	2	2			3	3		3
CO3	3		3	3	1		2			2	2		2
CO4	3		3	2	2		3		2	3	3		3
CO5	3		3	3	2	3	1		2	3	3		3
COs/PSOs	•	'		PSO1			PSO2	•		PSO3	•	PSO-	4
CO1										1			
CO2				1									
CO3										1			
CO4							1						
CO5													
3/2/1 Ind	icates	Stren	gth Of (Correla	tion, 3 –	High, 2	- Mediu	m, 1- L	ow				
Category	Basic Science		Engineering	Science	Humanities and social Science	Program Core	Program elective		Open Elective	Inter Disciplinary	Skill Component		Practical /Project

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/ S.Lr	P/R	С
EBME22001	ENGINEERING GRAPHICS	Ту	2	0/0	2/0	3

CONCEPTS AND CONVENTIONS (Not for examination)

5Hrs

Introduction to drawing, importance and areas of applications – BIS standards – IS: 10711 – 2001: Technical products Documentation – Size and layout of drawing sheets – IS 9606 – 2001: Technical products Documentation – Lettering – IS 10714 & SP 46 – 2003: Dimensioning of Technical Drawings – IS: 15021 – 2001: Technical drawings – Projections Methods – drawing Instruments, Lettering Practice – Line types and dimensioning – Border lines, lines title blocks Construction of polygons – conic sections – Ellipse, Parabola, Hyperbola and cycloids.

UNIT I PROJECTION OF POINTS, LINES AND PLANE SURFACES 12Hrs

Projection of points and straight lines located in the first quadrant – Determination of true lengths and true inclinations – projection of polygonal surface and circular lamina in simple position only.

UNIT II PROJECTION OF SOLIDS

10Hrs

Projection of simple solids like prism, pyramid, cylinder and cone in simple position Sectioning of above solids in simple vertical position by cutting plane inclined to any one of the reference plane and perpendicular to the other.

UNIT III DEVELOPMMENT OF SURFACES

9Hrs

Development of lateral surfaces of simple and truncated solids – prisms, pyramids, cylinders, and cones.

UNIT IV ISOMETRIC PROJECTION

9Hrs

Principles of isometric projection – isometric scale – isometric projections of simple solids, like prisms pyramids, cylinders and cones.

UNIT V ORTHOGRAPHICS PROJECTIONS

8Hrs

Orthographic projection of simple machine parts – missing views

BUILDING DRAWING

7Hrs

Building components – front, Top and sectional view of a security shed.

(Basic Auto CAD commands to be taught- not for Examinations)

Total Hours: 60

Note: First angle projection to be followed.

TEXT BOOKS

- 1. Bhatt, N.D. and Panchal, V.M. (2014) Engineering Drawing Charotar Publishing House
- 2. Gopalakrishnan, K.R. (2014) Engineering Drawing (Vol.I& II Combined) Subhas Stores, Bangalore.
- 3. Natrajan K.V., "A Text Book of Engineering Graphics", Dhanalakshmi Publishers, Chennai, 2018.
- 4. Venugopal K. and Prabhu Raja V., "Engineering Graphics", New Age International (P) Limited, 2008.

COURSE	COU	RSE NA	AME:					Ty/l	L b /	L	7	[/]	P/R	C	
CODE		FUND			OF CON	MPUTE	ER	ET	L/IE		S.	Lr			
EBCS22001	_			GINEE	RING				_		0	10	0.10	<u> </u>	
C. Cardita I.		uisite: N		7I C		d I aam	in a D.		Ty Due of	3	0	/0	0/0	3	
C: Credits, L: R: Research,							_				ion				
OBJECTIVES		EIL/IE.	Theory	//Lau/E	embedd	eu Thec	ny ana	Lab/III	elliai Ev	aruat	ЮП				
The students s		e made t	0												
• to learn the ma				puter sy	stem										
• know the corre	ect and e	fficient v	ways of s	solving p	roblems										
• provide a fund															
COURSE OU															
CO1	Demoi		ne knowl	ledge of	the basi	c structu	ıre, comj	ponents,	features	and g	ener	ations of	f		
CO2					puter lar		, languag	ge transla	ators and	l const	truct	algorith	ms to)	
CO3	Compa	are and c	contrast f	features,	, function	ning & t	ypes of o	operating	g system	and c	omp	uter netv	works	<u> </u>	
CO4							es of the								
CO5		Outcomes with Program Outcomes (POs)													
COs/POs	PO1	PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12													
COS/TOS	2	1	2	2	1	100	107	100	1	10.	10	1	10	114	
CO2	2	1	1	2	1				1			1			
CO3	2	2	1	2	1				1						
CO4	1	2	1	2	1				1			1		1	
CO5	1	1	1	2					1			1		1	
COs / PSOs		PSO1			PSO2			PSO	3			PSO	4		
CO1															
CO2															
CO3		1													
CO4					1			1							
CO5		1			1			1							
3/2/1 Indicates	Streng	th Of C	orrelati	on, 3 – 1	High, 2-	Mediu	m, 1- Lo	W	1			1	-		
		(1)	al												
		3nce	oci				_	ent							
		Science	s pu		ive	0)		pon	ject						
L'y	Basic Science		Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project						
Category	Scie	Engineering	nitie	m C	m e	Elec	isci	11 C	al /						
Zate	ic S	;ine	Humani Science	graı	graı	n E	r D	Skil	ctic						
	Bas	Eng	Hur Scie	Pro	Pro.	Оре	 Inte		Pra						
	, ¬		, , , • 4	<u> </u>			, ,								

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/ S.Lr	P/R	C
EBCS22001	FUNDAMENTALS OF COMPUTER ENGINEERING	Ту	3	0/0	0/0	3

UNIT I INTRODUCTION TO COMPUTERS

9 Hrs

Role of Computer in Current ERA –Block diagram of Computer, Processing data- Basic Computer organization -Characteristics of Computers – Evolution of Computers – Computer Generations – Classification of Computers — Number Systems

UNIT II COMPUTER SOFTWARE & HARDWARE

9 Hrs

Basic Operations-Computer Software & Hardware –Types of Software –Scripting languages- Hardware components-compiler-interpreter-Assembler

UNIT III PROBLEM SOLVING AND OS BASICS

9 Hrs

Planning the Computer Program – Purpose – Algorithm – Flowcharts – Pseudocode -Application Software Packages- Types (LAN, WAN and MAN), Data communication, topologies.

UNIT IV INTERNET 9 Hrs

Overview, Architecture, Functioning, Basic services like WWW, FTP, Telnet, Gopher etc., Search engines, E-mail, Web Browsers. Internet of Things (IoT): Definition, Sensors, their types and features, Smart Cities, Industrial Internet of Things.

UNIT V EMERGING TECHNOLOGIES IN COMPUTING

9 Hrs

Overview-Artificial Intelligence- Grid computing- Green computing- Big data analytics- Quantum Computing and Brain Computer Interface- IoT in Agriculture- Image processing in medical field

Total Hour:45

TEXT BOOKS:

- 1. Pradeep K. Sinha and Priti Sinha, Computer Fundamentals, Third Edition, BPB Publications, New Delhi, 2003.
- 2. Carl Reynolds and Paul Tymann, Principles of Computer Science, Schaum's Outline Series, McGraw Hill, New Delhi, 2008.
- 3. Sanjay Silakari and Rajesh K. Shukla, Basic Computer Engineering, WileyIndia, 2011.

REFERENCE:

1. Bhanu Pratap,, Computer Fundamentals, Cyber Tech Publications, New Delhi, 2011.

COURSE CODE	COURSE NAME: COMMUNICATIVE ENGLISH LAB	Ty/Lb/ ETL/IE	L	T/SLr	P/R	С
EBCC22I02	Prerequisite: Pass in Plus 2 English	IE	1	0/0	1/0	1

C: Credits, L: Lecture, T: Tutorial, SLr: Supervised Learning, P: Problem / Practical R: Research, Ty/Lb/ETL/IE: Theory /Lab/Embedded Theory and Lab/Internal Evaluation

OBJECTIVES:

The students should be made to

			udents in or a succ		_	l English	ommur	nication	and	organ	ized aca	demic ar	nd profess	ional reading
COURSI	E O I	UTCOM	IES (Co	s): Stud	lents will	be able	to							
CO1	En	igage in n	neaningfu	ıl oral co	mmunica	ition in Ei	nglish with	n writing	as a	scaffol	ding acti	vity.		
CO2	На	ive an in-	depth und	derstandi	ng of the	compone	ents of Eng	glish lang	guage	and it	s use in o	oral comm	unication.	
CO3	Stı	rengthen	their voca	abulary a	nd syntac	ctic know	ledge for u	ıse in ac	ademi	ic and	technical	commun	ication	
CO4	Le	arn to ne	gotiate m	eaning in	n inter-pe	rsonal and	d academic	c comm	ınicat	ion for	r a succes	ssful care	er.	
CO5	En	igage in c	organized	academi	c and pro	fessional	writing fo	or life-lo	ng lea	rning	and resea	rch		
Mapping of Course Outcome with Program Outcome (POs)														
Cos/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12														
CO1		1		1	1	3	2	1		1	3	3		3
CO2		2	1	1	1	3	3	1		2	3	3	1	2
CO3		1	1	1	1	2	1			2	3	3	1	3
CO4		1			2	3	1	2		1	2	2		3
CO5			1	1	2	3	1	1			3	1	1	2
COs/PSOs			PSO1			PSO2			PSC	O3		PS	SO4	
CO1				1										
CO2				1										
CO4				1			1							
CO5														
3/2/1 Indi	cate	es Streng	th Of Co	orrelatio	n, 3 – H	 igh, 2- N	Iedium, 1	- Low			1			
							1			5		ı t		
Category	Category Basic Science Engineering Science			Humanities and social Science	Program Core	Program elective	Ē	Open Erecuve	Inter Disciplinary		Skill Component		Practical /Project	
					$\sqrt{}$									

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/ S.Lr	P/R	С
EBCC22I02	COMMUNICATIVE ENGLISH LAB	IE	1	0/0	1/0	1

Unit I Listening 6Hrs

Authentic audios and videos

Prescribed Book: English Pronunciation in use – Mark Hancock,

Unit II Speaking 6Hrs

Individual- Solo: Self introduction, Describing, anchoring, welcome address, vote of thanks,

Pair & Group: Role play- formal -informal, narrating stories, film review, analysing newspaper headings and reports, interpreting Advertisement pamphlets

Group discussion, mock interviews, formal presentation, power point presentation

Prescribed Book: J. C. Richards with J. Hull &S. Proctor, Interchange, Cambridge University Press, 2015.

Unit III Reading 6Hrs

Extensive, focused reading, Strategies for effective reading - Reading comprehensions - Note making-summarising-paraphrasing, Review

Suggested reading: Short stories, news paper reports, film reviews

Unit IV Writing 6Hrs

Extensive writing practices – note taking, Cognitive and metacognitive strategies to inculcate a sense of organising ideas into coherent sentences and paragraphs, Formal letters, Business letters. Resume with covering letter

Unit V Non verbal communication/ charts, diagrams and table

6Hrs

Interpretation of charts Flow chart, pie chart, bar diagram, table, tree diagram, etc.,

Total Hours: 30

Text Book:

- 1. J. C. Richards with J. Hull &S. Proctor, Interchange, Level 2, Cambridge University Press, 2021.
- 2. M. ChandrasenaRajeswaran&R.Pushkala, English Communication Lab Work book

Reference Book

- 1. Hancock, Mark, English Pronunciation in Use; Cambridge Univ. Press, 2013
- 2. Dutt, K, Rajeevan, G & Prakash, CLN 2008, *A Course on Communication Skills*, 1st edn, Cambridge University Press, Chennai

COURSE CODE EBCS22ET2	COURSE NAME: PYTHON PROGRAMMING	Ty /Lb/ ETL/IE	L	T / S.Lr	P/R	С
	Prerequisite: C PROGRAMMING AND MS OFFICE TOOLS	ETL	1	0/0	2/0	2

C: Credits, L: Lecture, T: Tutorial, SLr: Supervised Learning, P: Problem / Practical

R: Research, Ty/Lb/ETL/IE: Theory /Lab/Embedded Theory and Lab/Internal Evaluation

OBJECTIVE:

OBJECTIVE												
The students sl	hould be	e made to										
	_		_			-	Python	programmii	ng languag	e		
		ns in Pytho										
							scipline	es, especially	y as it relat	es in engin	eering.	
COURSE OU	TCOM	ES (COs): Stude	ents wil	l be able	e to						
CO1			•			1 0		ming langua	age			
CO2	Under	stand hov	v functi	onal an	d operat	ions are to	be utili	ized				
CO3		the funda basic prog		progran	nming c	onstructs l	ike vari	iables, cond	itional logi	c, looping,	and func	tions to
CO4	design	object-o	riented	progran	ns with l	Python cla	sses					
CO5	Apply	the know	ledge to	o solve	various	real-world	l proble	ems				
Mapping of Course Outcomes with Program Outcomes (POs)												
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	2	1	1	1	1		1	1
CO2	3	2	2	2	2	1	1	1	1		1	1
CO3	3	2	2	2	2	1	1	1	1		1	1
CO4	3	3	3	2	2	1	2		2		2	2
CO5	3	3	3	3	2	1	2		2		2	2
COs / PSOs		PSO1			PSO	2		PSO3	<u> </u>	DS	O4	
		1301			130.			1503		10		
CO1		3			3			2			1	
CO2		3			2			2			1	
CO3		3			3			2			1	
CO4		3			2			2			1	
CO5		3			3			2			1	
H/M/L indica	tes Stre	ength of C	Correlat	tion I	I- High	, M- Medi	um, L-	Low				.1
					/es		ţ					
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project Internships / Technical Skill Soft Skills					
	<u> </u>	✓	T S	✓	Ь		<u> </u>		8			

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/ S.Lr	P/R	С
EBCS22ET2	PYTHON PROGRAMMING	ETL	1	0/0	2/0	2

UNIT I: INTRODUCTION 3Hrs

History of Python, Need of Python Programming, Applications Basics of Python Programming Using the REPL(Shell), Running Python Scripts, Variables, Assignment, Keywords, Input-Output, Indentation.

UNIT II: TYPES, OPERATORS AND EXPRESSIONS

3Hrs

Types - Integers, Strings, Booleans; Operators- Arithmetic Operators, Comparison (Relational) Operators, Assignment Operators, Logical Operators, Bitwise Operators, Membership Operators, Identity Operators, Expressions and order of evaluations Control Flow- if, if-elif-else, for, while, break, continue, pass.

UNIT III: FUNCTIONS 3Hrs

Defining Functions, Calling Functions, Passing Arguments, Keyword Arguments, Default Arguments, Variable-length arguments, Anonymous Functions, Fruitful Functions (Function Returning Values), Scope of the Variables in a Function - Global and Local Variables.

UNIT IV: LISTS, TUPLES, DICTIONARIES

3Hrs

Lists: list operations, list slices, list methods, list loop, mutability, aliasing, cloning lists, list parameters; Tuples: tuple assignment, tuple as return value; Dictionaries: operations and methods; advanced list processing - list comprehension; Illustrative programs: selection sort, insertion sort, mergesort, histogram.

UNIT V: OBJECT ORIENTED PROGRAMMING IN PYTHON

3Hrs

Classes, 'self variable', Methods, Constructor Method, Inheritance, Overriding Methods, Data hiding.

15Hrs

TEXT BOOKS:

- 1. Python Programming: A Modern Approach, VamsiKurama, Pearson.
- 2. Think Python:How to Think Like a Computer Scientist", 2nd editionUpdated for Python 3, Shroff/O'Reilly Publishers, Allen B. Downey
- 3. Learning Python, Mark Lutz, Orielly.

REFERENCE BOOKS:

- 1. Core Python Programming, W.Chun, Pearson.
- 2. Introduction to Python, Kenneth A. Lambert, Cengage.

30 Hrs

List of Experiments:

- 1. Develop a Python program using function to compute the factorial of a given number.
- 2. Develop a Python program to find the sum of 'N' natural number using function.
- 3. Develop a Python program to display only the positive elements of the list.
- 4. Develop a Python program to find the second largest digit from a number using function.
- 5. Develop a Python program to find the largest digit from a number using function.
- 6. Develop a Python program to check the given string is palindrome or not.
- 7. Develop a Python program to count the number of vowels in the given string.
- 8. Develop a Python program to calculate the number of characters and the number of words present in a string without using built-in functions and string methods.
- 9. Develop a Python program to remove the duplicate items from a list.
- 10.Develop a Python program to read in a list of 'N' integers and print its elements in reverse order without using reverse slicing, reverse method.

Total Hours: 45

		2022 Regulation					
COUR CODE EBCC	:	COURSE NAME: ENVIRONMENTAL SCIENCE (AUDIT COURSE)	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	С
		Prerequisite: Nil	IE	1	0/0	1/0	0
		cture, T: Tutorial, SLr: Supervised Learning, P: Problem Lb/ETL/IE: Theory /Lab/Embedded Theory and Lab/Int			on		
The stu	To acquir To acquir To know To gain u To attain	re knowledge of the Environment and Ecosystem & Biocome knowledge of the different types of Environmental pomore about Natural Resources and the Environment familiarity of human population and Environment COMES (COs): Students will be able to	•				
CO1	1	pout Environment and Ecosystem & Biodiversity					
CO2	_	hend air, water, Soil, Marine, Noise, Thermal and Nonent and identify the importance of natural resources like					
CO3	Discover	r water conservation and watershed management					
CO4	Identify	its problems and concerns climate change, global warm	ing, acid ra	ain,	ozone laye	er deple	tion

	'	environment
--	---	-------------

etc.,

CO₅

Mappi	ng of Cou	rse Outc	omes wi	th Pro	gram (Outcom	es (POs)				
COs/P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1
Os												2
CO1						2	3	2				1
CO2						2	3			2		1
CO3						2	3	2				1
CO4						2	3	2		2		1
CO5						2	3			2		1

Explain family welfare programmes and role of information technology in human health and

H/M/L indicates strength of correlation H-High, M-Medium, L-Low

Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project	
		V							l

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C
EBCC22I03	ENVIRONMENTAL SCIENCE (AUDIT COURSE)	IE	1	0/0	1/0	0

UNIT I ENVIRONMENT AND ECOSYSTEM

3Hr

Definition, Scope and Importance of environment – need for public awareness – concept, structure and function of an ecosystem- producers, consumers and decomposers – energy flow in the ecosystem. Biodiversity at national and local levels – India

UNIT II ENVIRONMENT POLLUTION

3Hrs

Definition – causes, effects and control measures of: (a) Air pollution (b) Water pollution (c) Soil pollution (d) Marine pollution (e) Noise pollution (f) Nuclear hazards (g) E-Wastes and causes, effects and control measures

UNIT III NATURAL RESOURCES

3Hrs

Forest resources: Use and over-exploitation, deforestation. Water resources: Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams-benefits and problems. Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems.

UNIT IV SOCIAL ISSUES AND THE ENVIRONMENT

3Hrs

From unsustainable to sustainable development – urban problems related to energy – water conservation, rain water harvesting, watershed management – resettlement and rehabilitation of people; its problems and concerns climate change, global warming, acid rain, ozone layer depletion, nuclear accidents, central and state pollution control boards-Public awareness.

UNIT V HUMAN POPULATION AND THE ENVIRONMENT

3Hrs

Population growth, variation among nations – population explosion, environment and human health – human rights – value education – HIV/AIDS – women and child welfare – role of information technology in environment and human health

(A) AWARENESS ACTIVITIES:

15Hrs

- i) small group meetings about water management, promotion of recycle use, generation of less waste, avoiding electricity waste
- ii) Slogan making event
- iii) Poster making event
- iv) Cycle rally
- v) Lectures from experts

(B) ACTUAL ACTIVITIES:

- i) Plantation
- ii) Gifting a tree to see its full growth
- iii) Cleanliness drive
- iv) Drive for segregation of waste
- v) To live some big environmentalist for a week or so to understand his work
- vi) To work in kitchen garden for mess
- vii) To know about the different varieties of plants
- viii) Shutting down the fans and ACs of the campus for an hour or so

Total Hours:30

TEXT BOOKS

- 1. Gilbert M.Masters, 'Introduction to Environmental Engineering and Science', 2nd edition, Pearson Education (2004).
- 2. Benny Joseph, 'Environmental Science and Engineering', Tata McGrawHill, NewDelhi, (2006).

REFERENCES

- 1. Vairamani, S. and Dr. K. Sankaran. Elements of Environmental and Health Science. Karaikudi: KPSV Publications, 5th Edition, July 2013.
- 2. Ifthikarudeen, Etal, Environmental Studies, Sooraj Publications, 2005.
- 3. R.Murugesan, Environmental Studies, Millennium Publishers and Distributors, 2nd Edition, July, 2009.

III SEMESTER

COURSE CODE	COUR	RSE NA	ME:	Discre	te Matl	nematio	CS		Ty/Lb/ ETL/IE	L	T/S.I	Lr	P/R	С
EBMA22006								-	EIL/IE					
	Prereg	uisite: I	First yea	ar Engii	neering	Mather	natics		Ty	3	1/0)	0/0	4
L: Lecture T:	Tutoria	ıl S.Lı	: Supe	rvised I	Learning	g P : Pr	oject R	: Rese	arch C: C	redit	S			•
Ty/Lb/ETL/IE	: Theor	y/Lab/E	Embedd	ed The	ory and	Lab/Int	ternal E	valuatio	on					
OBJECTIVES														
		uld be made to												
To understand								_			eory			
To understand									ice relation	ons				
To understand														
To understand						a, Finite	e state n	nachine	•					
To understand														
COURSE OU	TCOM	ES (CC)s) : Stu	idents w	ill be ab	le to								
CO1	To und	derstand	d the Ba	sic con	cepts in	Logic	and Pre	dicate c	alculus					
CO2	To und	derstand	d the Ba	sic con	cepts in	Combi	natorics	S						
CO3	To uno	derstand	d the Ba	sic con	cepts in	Group	theory							
CO4	To uno	To understand the Basic concepts in Group theory To understand the Basic concepts in Automata												
CO5	To und	Γο understand the Basic concepts in Graph theory												
Mapping of C	oing of Course Outcomes with Program Outcomes (POs)													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P	D10	PO1 1	P	012
CO1	3	3	2	3	2	1	1	1	2		1	1		3
CO2	3	2	1	2	1	2	1	2	2		1	1		3
CO3	2	3	1	3	2	2	2	1	1		2	1		3
CO4	3	3	1	2	1	2	2	1	1		2	1		2
CO5	2	3	1	2	1	2	2	1	1		2	2		3
COs / PSOs		PSO1			PSO2			PSC)3			PSO	4	
CO1		2			1			3				1		
CO2		2			1			3				1		
CO3		2			1			3				1		
CO4		2			1			3				1		
CO5		2			1			3				1		
3/2/1 Indicates	s Strens	s Strength Of Correlation, 3 – High, 2- Medium, 1- Low												
							Σ	ıt	ot					
	بو		pt (ina.	ner	ojeα					
	enc	స్ట	s ar	ore	g	tive	lqi:	odu	/Pr					
	Basic Science	erin	itie itie	n C	Program lective	lec	Inter Disciplinary	Skill Component	Practical /Project					
	sic	ine	nan al S	grar	Progra elective	n E	er I	<u> </u>	acti					
>:	Ba	Engineering Science	Humanities and social Science	Program Core	P ele	Open Elective	Int	Sk	Pre					
Category	V	<u> </u>	I s	<u> </u>									+	
_ate														

COURSE CODE: EBMA22006	COURSE NAME :	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	С
	DISCRETE MATHEMATICS	Ту	3	1/0	0/0	4

UNIT I LOGIC 12 hrs

Statements – Truth Table – Connectives – Normal Forms – Predicate Calculus – Inference Theory.

UNIT II COMBINATORICS

12hrs

Mathematical Induction – Pigeon Hole Principle – Principle of Inclusion and Exclusion – Recurrence Relations – Generating Functions.

UNIT III GROUPS 12 hrs

Basic Concepts – Groups – Subgroups – Homomorphism – Kernel – Cosets – Lagrange's theorem - Group Homomorphisms – Rings and Fields (Definitions and simple theorems and problems).

UNIT IV AUTOMATA

12 hrs

Finite Automata – Regular grammar – Introduction – Context free grammar – Introduction to Turing machine – Finite state machine – Introduction – Language Recognition

UNIT V GRAPHS 12 hrs

Introduction to Graphs – Terminology – Matrix representation of Graphs: Incidence matrix, Adjacency matrix – Graph Isomorphism – Connectivity – Euler and Hamiltonian Paths (simple theorems and problems).

Total Hours: 60

Reference Books:

- 1) Veerarajan T., Discrete Mathematics, Tata McGraw Hill Publishing Co., (2008).
- 2) Tremblay J.P., Manohar R., *Discrete Mathematical structures with applications to Computer science*, Tata McGraw Hill Publishing Co., (2008).
- 3) Kolman, Busby, Ross, Discrete Mathematical Structures, Pearson, (2014).
- **4)** Kenneth Rosen, *Discrete Mathematics and its applications (SIE)*, Tata McGraw Hill Publishing Co., (2007).

COURSE CODE: EBCS22002	COURSE NAME: DATA STRUCTURES	Ty/ Lb/ ETL/IE		T/ S.Lr	P/R	C
	Prerequisite: Nil	Ty	3	1/0	0/0	4

L : Lecture T:Tutorial S.Lr: Supervised Learning P: Project R: Research C: Credits

Ty/Lb/ETL/IE: Theory/Lab/Embedded Theory and Lab/Internal Evaluation

OBJECTIVES:

The students should be made to

	•								nd binarytı	rees			
Be fami													
			•			•		~ .	ksort, merg		heapsort		
									oanning tre	e			
Master th							rammin	g langua	age(java)				
COURSE OUT													
CO1		Understand space and time complexity of various algorithms and implement various operations on arrays and linked list[L2]											
CO2	Apply	major a	lgorithm	s and da	ita struct	tures to	solve pr	oblems[L3]				
CO3	Design	and app	ply tree	data stru	cture in	data co	mpressio	on algor	ithms[L3]				
CO4	develo	pment[Í	4]	•		C	·		ques in the	* *			
CO5		Analyze graph data structure and apply it to real world problems in finding shortest Path[L4]											
Mapping of Cou	irse Ou	tcomes	with Pro	ogram (Outcome	es (POs))						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	3	1			2	2	1	2		2	
CO2	3	3	3	1			3	2	3	2	1	2	
CO3	3	2	3	1		1	2	2	3	1	1	2	
CO4	3	3	3	1	1	1	2	2	3	2	1	2	
CO5	3	3	3	1	1	1	2	3	2	1	1	1	
COs / PSOs		PSO1	•		PSO2	•		PSC)3		PSO4	· ·	
CO1		3			3			2			1		
CO2		3			3			1			2		
CO3		3			2			3			1		
CO4		3			3			1			2		
CO5		3			3			2			1		
3/2/1 indicates S	trength	ofCorre	elation	3- Hig	gh, 2- M	ledium,	1-Low			I			
Category	Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project				
Cate				✓									
	l	1	1	l	l	1	1	I	1		1	l	

COURSE CODE: EBCS22002	COURSE NAME:	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	С
	DATA STRUCTURES	Ту	3	1/0	0/0	4

UNIT – I LINEAR DATA STRUCTURES – LIST

12 Hrs

Introduction: Abstract Data Types (ADT) **Arrays**: Definition, Single and Multidimensional Arrays, **Linked lists**: Array Implementation and Dynamic Implementation of Singly Linked Lists, Doubly Linked List, Circularly Linked List, Operations on a Linked List. Insertion, Deletion, Traversal, Polynomial Representation and Addition, Generalized Linked List.

UNIT - II LINEAR DATA STRUCTURES - STACK AND QUEUES

12Hrs

Stacks: Abstract Data Type, Primitive Stack operations: Push & Pop, Array and Linked Implementation of Stack, Application of stack: Prefix and Postfix Expressions, Evaluation of postfix expression, Recursion, Tower of Hanoi Problem, Simulating Recursion, **Queues**: Queue ADT, Operations on Queue: ENQUE, DEQUE, Full and Empty, Circular queues, Array and linked implementation of queues, Dequeue and Priority Queue.

UNIT – III NON LINEAR DATA STRUCTURES - TREES

12Hrs

Trees: Basic terminology, Binary Trees, Binary Tree Representation: Array Representation and Dynamic Representation, Complete Binary Tree, Algebraic Expressions, Extended Binary Trees, Tree Traversal algorithms: Inorder, Preorder and Postorder, Threaded Binary trees, Binary Search Trees, AVL Trees, B-Trees, Heaps.

UNIT – IV NON LINEAR DATA STRUCTURES –GRAPHS

12Hrs

Graphs: Terminology, Sequential and linked Representations of Graphs: Adjacency Matrices, Adjacency List, Adjacency Multi list, Graph Traversal: Depth First Search and Breadth First Search, Connected Component, Spanning Trees, Minimum Cost Spanning Trees: Prims and Kruskal algorithm. Shortest Path algorithm: Dijikstra Algorithm

UNIT – V SEARCHING, SORTING AND HASHING

12Hrs

Searching: Sequential search, Binary Search, Comparison and Analysis Internal Sorting: Insertion Sort, Selection, Bubble Sort, Quick Sort, Two Way Merge Sort, Heap Sort, Radix Sort, Hashing: Hash Function, Collision Resolution Strategies

Total Hours:60

TEXTBOOK

- 1. Mark Allen Weiss, "Data Structures and Algorithm Analysis in C", 2nd Edition, Pearson Education, 1997.
- 2. Reema Thareja, "Data Structures Using C", Second Edition, Oxford University Press, 2011

REFERENCES

- 1. Aaron M. Tenenbaum, Yedidyah Langsam and Moshe J. Augenstein "Data Structures Using C and C++", PHI Learning Private Limited, Delhi India
- 2. Horowitz and Sahani, "Fundamentals of Data Structures", Galgotia Publications Pvt Ltd Delhi India.
- 3. A.K. Sharma ,Data Structure Using C, Pearson Education India.

COURSE CODE: EBCS22003	COURSE NAME: DATABASE MANAGEMENT SYSTEMS	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C
	Prerequisite: DATA STRUCTURES	Ty	3	0/0	0/0	3

L: Lecture T: Tutorial S.Lr: Supervised Learning P: Project R: Research C: Credits

T/L/ETL /IE: Theory/Lab/Embedded Theory and Lab/Internal Evaluation

OBJECTIVE:

The students should be made to

- To understand the different issues involved in the design and implementation of a database system.
- To study the physical and logical database designs, database modeling, relational, hierarchical, and network models.
- To develop an understanding of essential DBMS concepts such as: database security, integrity, and

concurren	ency													
COURSE OU	<u> </u>	MES (C	(Os): S	tudents	will be	able to	0							
CO1		rstand th						ques c	of DE	BMS[L	2]			
CO2		indexii												
CO3		analyze routine requisite for maintaining and querying databases and need for sorting and												
	_	oin operations in databases[L4]												
CO4	Unde	rstand t	he imp	ortance	of tran	saction	manag	gemen	t, coi	ncurrer	ncy contro	l and rec	overy	
	syster	n in data	abases[L2]							-			
CO5	Apply	advanc	ed repr	esentat	ions of	databa	ses sui	ted for	real	-time a	pplication	ıs[L3]		
Mapping of C	Course	Outcor	nes wit	h Prog	gram O	utcom	es (PO	s)						
COs/POs	PO1	PO2	PO3		PO5	PO6	PO7	PO8		PO9	PO10	PO11	PO12	
CO1	3	2	2	1				2		2	2		2	
CO2	3	2	3	1	1			2		2	2	1	3	
CO3	2	3	3	1				1		3	3	1	3	
CO4	2	3	3	1	1	1		2		3	3	1	3	
COs / PSOs	3	3 DCO1	3	1	1 DCO2	1		3	72	3	2	1 PSO4	3	
COs / PSOs CO1		PSO1			PSO2			PSC	JS					
		2			1							1		
CO2		2			1						1			
CO3		1			1							1		
CO4		2 2			1			$\frac{2}{2}$				1		
CO5 3/2/1 Indicate	c Stran		Correlat	ion 3		2 Ma	dium 1					1		
3/2/1 marcate	Such	gui Oi C	Jonetai	1011, 5	- mgn,	Z- IVIC		LOW						
			_											
		Φ	cial											
		enc	ties and social		tive		ary	ınt	ç					
	ice	Sci	anc	ė	lec	e e		one	roje					
	cience	ing	ties	Core	um e	ctive	sciplinary	du	1 /P					
	c S(eeri	nani	am	Program elective	Ele	Di	Co	tica					
>	Basic S	Engineering Science	Humanit Science	Program (Prc	Open Ele	Inter Di	Skill Component	Practical /Project					
ogor	<u> </u>	田田	14 0	Д		Ō	I	<i>•</i>		-				
Category				✓										
]					l		

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/ S.Lr	P/R	C
EBCS22003	DATABASE MANAGEMENT SYSTEMS	Ту	3	0/0	0/0	3

UNIT I FUNDAMENTALS OF DATABASE

9 Hrs

Introduction - Purpose of database systems — Data Abstraction -Data models — Instances and schemas — Data Independence — DDL — DML — Database user — ER model — Entity sets- keys — ER diagram — relational model — structure — relational algebra- relational calculus- views

UNIT II SQL, INDEXING & HASHING

9 Hrs

SQL - normalization – normalization using functional – Multivalued join dependence - file transaction – data dictionary – indexing and hashing basic concepts and B+ tree Indices - static and dynamic hash functions

UNIT III QUERY PROCESSING AND TRANSACTIONS

9 Hrs

Overview - Measures of Query Cost - Selection Operation - Sorting - Join Operation - Transaction Concept - A Simple Transaction Model - Storage Structure - Serializability

UNIT IV CONCURRENCY CONTROL AND RECOVERY SYSTEM

9 Hrs

Lock-Based Protocols - Deadlock Handling - Timestamp-Based Protocols - Validation-Based Protocols - Failures Classification - Storage - Recovery and Atomicity - Recovery Algorithm - Buffer Management

UNIT V ADVANCED TOPICS IN DATABASES

9 Hrs

Database-System Architectures - Parallel Databases - Distributed Databases - Database Tuning - Introduction to Special Topics - Spatial & Temporal Databases - Data Mining and Warehousing.

Total Hours: 45

TEXT BOOKS:

1. Abraham, Silberschatz. Henry, F. K..Sudharshan, S. (2013) Database System Concepts (6thed.) Tata McGraw Hill, New Delhi

REFERENCE BOOKS:

- 1. Ramez, E. Shamkant, B. Navathe (2008) Fundamentals of database systems (5th ed.), Pearson Education
- 2. Date, C. J, (2012) An Introduction to Database Systems (8th ed.), Pearson Education

COURSE CODE: EBEC22ID1	DIGITAL PRINCIPLES AND SYSTEM DESIGN	Ty/Lb/ ETL/IE	L	T/ S.Lr	P/R	С
LBLC22ID1	Prerequisite: Nil	Ty	3	0/0	0/0	3
	Tutorial S.Lr: Supervised Learning P: Project: Theory/Lab/Embedded Theory and Lab/Internal			Credits		
OBJECTIVES:						
The students sho	uld be made to					
 To intro 	duce number systems and codes and its conversio	ons				
 To intro 	oduce Boolean algebra and its applications in digit	al systems				

	To introduce number systems and codes and its conversions											
			ean alge						tems			
• To i	ntroduc	e the de	esign of	various	s combi	inationa	al digita	d circuit	s using lo		3	
							•	nous Se	equential	circuits		
COURSE OUTCOMES (COs): Students will be able to												
CO1	A	Acquired knowledge about number systems and its conversions										
CO2	A	Acquired	d knowle	edge ab	out boo	olean al	gebra					
CO3	A	Ability to	o identif	fy, anal	yze & o	design o	combina	ational c	circuits			
CO4	A	Ability to	o identif	fy & an	alyze s	ynchro	nous &	asynchr	onous cir	cuits		
Mapping of	f Cour	se Outc	omes w	ith Pro	ogram	Outcor	nes (PC	Os)				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	2	1	1	1	1	1	1	2	1	1
CO2	3	2	1	1	1	1	1	1	1	1	1	1
CO3	2	2	3	1	1	2	1	1	2	2	1	1
CO4	2	2	3	1	1	2	1	1	2	2	1	1
COs / PSOs	PS	SO1		PS	O2			PSO3	3	PSO4		
CO1		1		3	3			1			1	
CO2		1		3	3			1			1	
CO3		3		2	2			1			1	
CO4		3		2	2			1			1	
3/2/1 Indica	tes Str	ength Of	f Correl	ation, 3	- High	n, 2- M	edium,	1- Low				
Category	Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project			
							✓					

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/ S.Lr	P/R	С
EBEC22ID1	DIGITAL PRINCIPLES AND SYSTEM DESIGN	Ту	3	0/0	0/0	3

UNIT I NUMBER SYSTEMS

9 Hrs

Review of Decimal, Binary, Octal And Hexadecimal Number Systems-Binary Addition Subtraction, Multiplication& Division—Number Conversions – Signed Magnitude form – 1's and 2's Complement – Binary weighted codes- Binary arithmetic – codes – BCD code, Gray code, Excess-3 Code.

UNIT II BOOLEAN ALGEBRA

9 Hrs

Binary logic Functions- Boolean laws –Boolean Algebra – Reduction of Boolean Expressions De Morgan's Theorems, Sum Of Products –Product Of Sums –karnaugh map- Quine McCluskey Method.

UNIT III COMBINATIONAL LOGIC

9 Hrs

Logic gates – AND, OR, NOT, NOR, NAND and EX-OR Gates – Half adder – Full adder – Half subtractor – Full subtractor – Demultiplexer – Demultiplexer – Decoder.

UNIT IV SYNCHRONOUS/ASYNCHRONOUS SEQUENTIAL LOGIC

9 Hrs

Latches-R-S- Flip Flop, S-R Flip Flop, D Flip Flop, JK Flip Flop, T Flip-Flop - Master slave Flip-Flop - Counters -Up Down counters- Binary Counters-Ring counter- Shift Registers. Asynchronous counters - Decade counters - State diagram - State Table - State Reduction - State Assignment- Excitation Table- Analysis of Asynchronous sequential circuits - Design of Asynchronous Sequential Circuits.

UNIT V MEMORY DEVICES

9Hrs

Basic memory structure – ROM -PROM – EPROM – EEPROM –EAPROM, RAM – Static and dynamic RAM - Programmable Logic Devices – Programmable Logic Array (PLA) -Programmable Array Logic (PAL) – Field Programmable Gate Arrays (FPGA) – Implementation of combinational logic circuits using PLA, PAL.

Total Hours: 45

TEXT BOOKS:

- 1. Charles H. Roth & Larry L.Kinney, "Fundamentals of Logic Design", Cengage Learning, 7th Edition.
- 2. M. Morris Mano & Michael D.Ciletti (2008) Digital Design. Pearson Education
- 3. Thomas.L.Floyd (2013) "Digital Fundamentals", 10th Edition Pearson Education
- 4. A.Anand Kumar Fundamentals of Digital Circuits, 4th Edition, PHI Learning Private Limited, 2016.
- 5. Soumitra Kumar Mandal Digital Electronics, McGraw Hill Education Private Limited, 2016.

REFERENCE BOOKS:

- 1. Ronald J. Neal S. Gregory L (2009), "Digital Systems", 10th Edition, Pearson Prentice Hall.
- 2. R P Jain, (2010), "Modern Digital Electronics", 4th Edition, Tata Mcgraw Hill Ed. Pvt. Ltd

COURSE CODE EBEE22ID1	COURSE NAME : BASIC ELECTRICAL ENGINEERING	Ty/Lb/ ETL/IE	L	T/ S.Lr	P/R	С			
	Prerequisite: Nil	Ту	3	0/0	0/0	3			
L: Lecture T: Tutorial S.Lr: Supervised Learning P: Project R: Research C: Credits									

Ty/Lb/ETL/IE: Theory/Lab/Embedded Theory and Lab/Internal Evaluation

OBJECTIVES:

The students should be made to

- To learn about DC circuits
- To understand about AC circuits

• To edu	cate the	basic pri	inciples			•							
		wledge a knowled				nines and	d Inducti	on Moto	rs				
COURSE OU	TCOM	ES (COs): Stude	nts will	be able	to							
CO1	Acqui	res basic	knowled	lge in D	C Circui	its.							
CO2	The gr	aduate w	vill be ab	le to stu	dy abou	t AC Cir	cuits.						
CO3	Under	stands th	e basic p	rinciple	s in DC	Machine	es.						
CO4	Acqui	res basic	knowled	lge abou	ıt Transf	ormers.							
CO5	Acqui	res basic	knowled	lge in S	ynchrono	ous Mac	hines an	d Inducti	on Motors	5.			
Mapping of Co	ourse O	utcomes	s with Pı	ogram	Outcom	es (POs)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	3	3	3	3	3	3	3	2	3	3	
CO2	3	3	3	3	3	3	3	3	2	2	3	3	
CO3	3	2	2	2	3	3	2	3	2	2	2	3	
CO4	3	2	2	2	3	3	2	3	2	2	2 2 3		
CO5	3	2	2	2	3	3	2	3	2	2	2	3	
COs / PSOs		PSO1			PSO2			PSO	3		PSO4		
CO1		2			3			1			2		
CO2		2			3			1			2		
CO3		2			3			1			2		
CO4		2			3			1			2		
CO5		1			3			1			2		
3/2/1 Indicates	Streng	1	orrelatio	on, 3 – F	ligh, 2-	Medium	ı, 1- Lov	V			T		
Category	Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project				
							✓						

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C
EBEE22ID1	BASIC ELECTRICAL ENGINEERING	Ту	3	0/0	0/0	3

Unit 1 DC CIRCUITS 9Hrs

Introduction - v-i relationships of circuit parameters – Voltage source and current source -Kirchhoff's laws – Network reduction techniques – Mesh and Node analysis –Superposition theorem – Thevenin's theorem – Norton's Theorem – Maximum powertransfer theorem.

Unit II AC CIRCUITS 9Hrs

RMS and average values of periodic waves – form factor – phase and phase difference –RL, RC, RLC circuits – power and power factor – Introduction to threephase system – solution of balanced three phase circuits – power measurement of 3-phasesystem.

Unit III DC MACHINES 9Hrs

Construction details of DC machines – principle of operation of DC generator – EMFequation – Characteristics of DC generators – Principle of DC motor –Back EMF –Torque equation – Characteristics shunt, series and compound motors - Losses and Efficiency.

Unit IV TRANSFORMERS 9Hrs

Principle of ideal transformer – constructional details – EMF equation – Voltage regulation – losses and efficiency –Autotransformer – Power supplies - basic principle of SMPS and UPS.

Unit V SYNCHRONOUS MACHINES AND INDUCTION MOTORS 9Hrs

Construction details – principle of alternator – EMF equation – Voltage regulation - Starting of synchronous motor.Induction motor – principle of operation – torque equation – torque-slip characteristics – Starting methods and speed control.

Total Hours:45

Text Books:

- 1. S.K Bhattacharya, "Electrical Machines", Tata Mc Graw Hill Publications.
- 2. Sudhakar & Shyammohan "Circuits & Networks Analysis & Synthesis" Tata McGraw Hill,5th Edition Paperback 1 July 2017.
- 3.B.L.Theraja "A Textbook of Electrical Technology Volume II" S. Chand Publishing, 2005

Reference Books:

- 1. J.A.Edminister, "Theory And Problems On Electric Circuits" Mc Graw Hill Publications, 1994.
- 2. I.J. Nagrath& D.P. Kothari, "Electrical Machines", TMH Publications.
- 3. "Hughes Electrical Technology", Revised by I McKenzie Smith, Low price Edition, Pearson Education, Seventh edition.

EBCC22ET1	COURSE NAME: UNIVERSAL HUMAN VALUES: UNDERSTANDING HARMONY	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C
	Prerequisite:None, UHV1 (Desirable)	ETL	1	0/0	2/0	2

L:LectureT:Tutorial SLr: SupervisedLearning P:Project

R:ResearchC:CreditsT/L/ETL/IE:Theory/Lab/Embedded Theoryand Lab/Internal Evaluation

OBJECTIVES:

The students should be made to

Human Values Courses: During the Induction Program, students would get an initial exposure to human values through Universal Human Values – I. This exposure is to be augmented by this compulsory full semester foundation course.

- 1. Development of a holistic perspective based on self- exploration about themselves (human being), family, society and nature/existence.
- 2. Understanding (or developing clarity) of the harmony in the human being, family, society and nature/existence
- 3. Strengthening of self-reflection.

4. Develop	ment of co	ommitmen	nt and co	urage t	o act.										
COURSE	COURSEOUTCOMES(Cos): The students will be able to CO1 Relate self and surroundings and identify responsibility in life														
CO1							oility in 1	ife							
CO2	Associa	ate human ı	relationsh	ip and r	nature to	handle	problem	s and provi	de sustair	nable solu	itions				
CO3	Develo	p critical al	oility and	engage	in refle	ctive and	d indeper	ndent Thin	king						
CO4	Show c	ommitmen	t towards	underst	tanding	of value	S								
CO5	Apply 1	Human val	ues in day	y to day	setting	in real li	fe								
Mappingo	f CourseC	utcomesw	ithProgr	amOut	comes (POs)									
COs/POs															
CO1			1	1		2	1		1	1		2			
CO2			2	2	1	2	3	1		2		2			
CO3			1	1	1	2		2	1	2		3			
CO4			1		1	2	1	3 2	1	1		3			
CO5 Cos/P	OSO _G		_			PSO2		<u> </u>	PSO3	1	PS				
COS/P			PSO1 1			1			1			1			
CO			2			2			2			2			
CO			1		1				1			1			
CO			1		1				1	2					
CO			1			2			2			1			
3/2/1indica	atesstreng	thofcorrela	ation3 –H	ligh,2–I	Mediun	1,1– Lov	W	•							
Category	Basic Science	Engineering Science	Humanities and social Science		Program Core	Program elective	Open Elective	· · · · · · · · · · · · · · · · · · ·	Inter Disciplinary		Skill Component	Practical /Project			

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C
EBCC22ET1	UNIVERSAL HUMAN VALUES: UNDERSTANDING	ETL	1	0/0	2/0	2

UNIT I Introduction - Need, Basic Guidelines, Content and Process for ValueEducation

9Hrs

Purpose and motivation for the course, recapitulation from Universal HumanValues-I - Self-Exploration—what is it? -Its content and process; 'Natural Acceptance' and Experiential Validation-as the process for self-exploration. — Continuous Happiness and Prosperity-Alookatbasic Human Aspirations - Right understanding, Relationship and Physical Facility- the basic requirements for fulfilment of aspirations of every human being with their correct priority- Understanding Happiness and Prosperity correctly-Acritical appraisal of the currentscenario—Method to fulfil the above human as pirations: understanding and living in harmony atvariouslevels.Include practice sessions to discuss natural acceptance in human being as the innate acceptance forliving with responsibility (living in relationship, harmony and co-existence) rather than asarbitrariness in choice based on liking-disliking.

UNIT II Understanding Harmony in the Human Being - Harmony in Myself!

9Hrs

9Hrs

Understanding human being as a co-existence of the sentient 'I' and the material 'Body'.- Understanding the needs of Self ('I') and 'Body' - happiness and physical facility. - Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer). - Understanding the characteristics and activities of 'I' and harmony in 'I' - Understanding the harmony of I with the Body: Sanyam and Health; correct appraisal of Physicalneeds, meaning of Prosperity in detail - Programs to ensureSanyam and Health.

Include practice sessions to discuss the role others have played in making material goods available tome. Identifying from one's own life. Differentiate between prosperity and accumulation. Discussprogram for ensuring health vs dealing with disease

UNIT IIIUnderstanding Harmony in the Family and Society- Harmony in Human-HumanRelationship

Understanding values in human-human relationship; meaning of Justice (nine universal values inrelationships) and program for its fulfilment to ensure mutual happiness; Trust and Respect asthe foundational values of relationship - Understanding the meaning of Trust; Difference between intention and competence - Understanding the meaning of Respect, Difference between respect and differentiation; the othersalient values in relationship - Understanding the harmony in the society (society being an extension of family): Resolution, Prosperity, fearlessness (trust) and co-existence as comprehensive Human Goals - Visualizing a universal harmonious order in society- Undivided Society, Universal Order- fromfamily to world family. Include practice sessions to reflect on relationships in family, hostel and institute as extended family, real life examples, teacher-student relationship, goal of education etc. Gratitude as a universal value relationship. Discuss with scenarios. Elicit examples from students' lives.

UNIT IVUnderstanding Harmony in the Nature and Existence - Whole existence as Coexistence

9Hrs

Understanding the harmony in the Nature - Interconnectedness and mutual fulfilment among the four orders of nature- recyclability and self-regulation nature - Understanding Existence as Co-existence of mutually interacting units in all-pervasive space - Holistic perception of harmony at all levels of existence - Include practice sessions to discuss human being as cause of imbalance in nature (film "Home" canbe used), pollution, depletion of resources and role of technology etc.

UNIT VImplications of the above Holistic Understanding of Harmony on ProfessionalEthics

9Hrs

Natural acceptance of human values - Definitiveness of Ethical Human Conduct - Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order - Competence in professional ethics: a. Ability to utilize the professional competence foraugmenting universal human order b. Ability to identify the scope and characteristics of peoplefriendlyand eco-friendly production systems, c. Ability to identify and develop appropriate technologies and management patterns for above production systems. - Case studies of typical holistic technologies, management models and production systems - Strategy for transition from the present state to Universal Human Order: ((a) At the level ofindividual: as socially and ecologically responsible engineers, technologists and managers, (b)Atthe level of society: as mutually enriching institutions and organizations - Sum up Include practice Exercises and Case Studies will be taken up in Practice (tutorial) Sessions e.g. To discuss the conduct as an engineer or scientist etc.

Total Hours:45

Text Book:

Human Values and Professional Ethics by R R Gaur, R Sangal, G P Bagaria, Excel Books, New Delhi, 2010 Reference Books

Jeevan Vidya: EkParichaya, A Nagaraj, Jeevan Vidya Prakashan, Amarkantak, 1999.

Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.

The Story of Stuff (Book).

The Story of My Experiments with Truth - by Mohandas Karamchand Gandhi.

Small is Beautiful - E. F Schumacher.

COURSE	2022 Regulation COURSE NAME:		1			
CODE: EBCS22L01	DATA STRUCTURES LAB	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R 3/0	C
	Prerequisite: C PROGRAMMING AND MS OFFICE TOOLS	Lb	0	0/0	3/0	1
	Theory/Lab/Embedded Theory andLab/Internal Evaluation: The students should be made to	ıtıon				
• To stre	ngthen their problem-solving ability by applying the d approach.	characteristic	es of	an object-		
	oduce object oriented concepts inJava.					
COURSE OUTCO	OMES (COs): Students will be able to					
CO1	Understand the basic operations on arrays, lists, st	acks and queu	e dat	ta structure	S	
CO2	Apply non linear data structure in real world appli	cation				

COI Unders	stand the	basic operati	ions on arr
------------	-----------	---------------	-------------

CO1	Understand the basic operations on arrays, lists, stacks and queue data structures
CO2	Apply non linear data structure in real world application
CO3	Apply various data structures in simple applications
CO4	Analyze algorithms for operations on Binary Search Trees
CO5	Analyze the complexity of given algorithms

Mapping of Course Outcomes with Program Outcomes (POs)

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	1				2	2	2		2
CO2	3	2	3	1	1			2	2	2	1	3
CO3	2	3	3	1				1	3	3	1	3
CO4	2	3	3	1	1	1		2	3	3	1	3
CO5	3	3	3	1	1	1		3	3	2	1	3
	3	2	2	1				2	2	2		2
COg / DSOg		DSO1			DSO2			DCO3			DSO	1

COs / PSOs	PSO1	PSO2	PSO3	PSO4
CO1	2	1		1
CO2	2	1		1
CO3	1	1		1
CO4	2	1	2	1
CO5	2	1	2	1

3/2/1 Indicates Strength Of Correlation, 3 – High, 2- Medium, 1- Low

Category	Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project		
				√					√		

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	С
EBCS22L01	DATA STRUCTURES LAB	Lb	0	0/0	3/0	1

LIST OF EXPERIMENTS:

- 1. Write a program to implement list ADT using arrays and linked list.
- 2. Write a Program to implement the following using an array a) Stack ADT b) Queue ADT.
- 3. Write a Program to implement the following using a singly linked list a) Stack ADT b) Queue ADT.
- 4. Write a program that reads an infix expression, converts the expression to postfix form and then evaluates the postfix expression.
- 5. Write a Program to traverse binary tree in preorder, postorder and inorder.
- 6. Write a program to perform the following operations a) Insert an element into a binary search tree.b)Delete an element from a binary search tree.c)Search for a key element in a binary search tree.
- 7. Write a Program for the implementation of Binary Heaps
- 8. Write a Program for the implementation of Breadth First Search and Depth First Search.
- 9. Write a Program for the implementation of Linear Search and Binary Search
- 10. Write a Program for sorting. (bubble sort, insertion sort, shell sort, heap sort)
- 11. Write a Program for the implementation of Collision Resolution using Open Addressing

Software requirement: C/C++

Total Hours:45

COURSE	COUI	RSE NA	AME:						Т/Т	1. /					
CODE: EBCS22LO2	DAT	TABAS	SE MA	NAGE	MENT	SYST	EM LA	AB	Ty/I ETI		L	T/S.	Lr	P/R	C
	Prerec	quisite:	DATA S	STRUCT	URES L	AB			L	b	0	0/0	О	3/0	1
L : Lecture T	: Tutor	ial S.	Lr : Su	pervised	d Learn	ing P	Projec	t R:	Rese	arch C	C: C	redits			
Ty/Lb/ETL/II		ory/Lat	/Embe	dded Th	neory a	nd Lab	/Interna	ıl Ev	aluatio	on					
OBJECTIVE															
The students															
			-	ery it u	_	_	_		_		-				
		he sigr	nificanc	e of in	tegrity	constr	aints, r	efere	ntial i	integr	ity (constr	aints,	trigg	ers,
asserti			70)	G 1	*** 1										
COURSE OU															
CO1				grammiı											
CO2				n and a _l					re of	query	[L4]				
CO3				ture and											
CO4				olem and	d apply	the pro	ogramn	ning l	knowl	edge f	or c	leterm	nining		
	solutions[L2]														
CO5				edge ga					[L3]						
Mapping of (1					DO		040		4 5	- 1
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO		PO9	P	-	PO1	_	012
CO1	3	2	2	1	1				2	2		2	1	_	2
CO2	3	2	3	1	1				2	2			1		3
CO3	2	3	3	1	1	1			1	3		3	1		3
CO4	3	3	3	1	1	1			2	3		3	1		3
CO5	3	3	3	1	1	1		•	3	3		2	1		3
COs / PSOs		PSO1			PSO2			PS	SO3				PSC)4	
CO1		2			1								1		
CO2		2			1								1		
CO3		1			1								1		
CO4		2			1				2				1		
CO5		2			1				2				1		
3/2/1 Indicate	s Stren	gth Of	Correla	ition, 3	– High,	, 2- Me	dium, 1	- Lo	W						
		ce					>								
_		ien	þ	ıre	ve	a)	nar	nen	jeci						
;ory	ıce	3 Sc	an:	ı Çc	ecti	tive	ildi	Ipor	Pro						
Category	Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project						
$C_{\mathcal{E}}$	S S	nee	nani Il So	rogi	ran	l ue	r L]] C	ctic						
	asi	ngir	[um	Pı	rog	Opt	Inte	Ski	Pra						
	В	ū	H		<u> </u>	_			, ,						
				✓					✓						

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C
EBCS22LO2	DATABASE MANAGEMENT SYSTEM LAB	Lb	0	0/0	3/0	1

I. Program to learn DDL and DML commands

- 1. Execution of data description language commands
- 2. Execution of data manipulation language commands
- 3. Execution of data control language commands
- 4. Execution of transaction control language commands
- 5. Insert command
- 6. SQL Queries
 - a. Simple SQL Queries
 - b. Nested Queries
 - c. Aggregation Operators
 - d. Grouping and Ordering commands
- 7. Select, from and where clause
- 8. Set operation [union, intersection, except]
- 9. String operations
- 10. Join operation
- 11. Modification of the database

II. PL / SQL programs

- 1. Control statements (for loop)
- 2. Control statements (while loop)
- 3. Control statements (for reverse loop)
- 4. Control statements (loop end loop)
- 5. Sum of even numbers
- 6. Sum of odd numbers
- 7. Series generation
- 8. Implementation of sub-program
- 9. Implementation of cursor using pl/sql
- 10. Control statement (if-else end if)

Total Hours:45

COURSE CODE: EBEC22IL1	COURSE NAME: DIGITAL SYSTEMS LAB	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C
	Prerequisite: SOLID STATE PHYSICS	Lb	0	0/0	3/0	1

L: Lecture T: Tutorial S.Lr: Supervised Learning P: Project R: Research C: Credits

Ty/Lb/ETL/IE: Theory/Lab/Embedded Theory and Lab/Internal Evaluation

OBJECTIVES:

The students should be made to

			er syster an algeb						tems			
• To in	troduce	the de	sign of	various	combi	nationa	ıl digita	al circuit	ts using	logic gates		
								onous Se	equentia	l circuits		
COURSE O	UTCO	MES ((COs):	Student	s will b	e able to)					
CO1	A	cquirec	l knowle	edge ab	out nu	mber sy	ystems	and its o	conversi	ions		
CO2	A	cquirec	l knowle	edge ab	out bo	olean a	lgebra					
CO3			o identif		-							
CO4			o identif	-				-	ronous	circuits		
Mapping of			•					1	1 1		T	T =
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	2	1	1	1	1	1	1	2	1	1
CO2	3	2	1	1	1	1	1	1	1	1	1	1
CO3	2	2	3	1	1	2	1	1	2	2	1	1
CO4	2	2	3	1	1	2	1	1	2	2	1	1
COs/ PSOs		01	PSO			O3		504				
CO1		1	3			1		1 1				
CO2		<u>1</u> 3	2			1 1		1				
CO3		3	2			<u>. </u>		1				
3/2/1 Indicate												
3/2/1 Maicat								Dow				
Category	Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project			
]	田田	H S	P		0	√		√			

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C
EBEC22IL1	DIGITAL SYSTEMS LAB	Lb	0	0/0	3/0	1

LIST OF EXPERIMENTS:

- 1. Verification of Truth tables of Logic Gates
- 2. Implementation of Boolean function
- 3. Implementation of Adders&Subtractors
- 4. Implementation of Multiplexers
- 5. Implementation of Demultiplexers
- 6. Implementation of Encoder
- 7. Implementation of Decoders
- 8. Verification of Flip Flops
- 9. Implementation of SISO, SIPO,
- 10. Implementation of PISO,PIPO
- 11. Implementation of Johnson counter
- 12. Study of Modulo-N Counter

Total Hours:45

COURSE CODE EBCS22ET3	COURSE NAME: OBJECT ORIENTED PROGRAMMING WITH C++	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	С
	Prerequisite: C PROGRAMMING AND MS OFFICE TOOLS	ETL	2	0/0	2/0	3
T T 4 T	Tratagial C.L., Carragnia del agrico D. Daria de D. D.	1.0.0	7 114			

 $L: Lecture \ T: Tutorial \quad S.Lr: Supervised \ Learning \ P: Project \ R: Research \ C: Credits$

Ty/Lb/ETL/IE: Theory/Lab/Embedded Theory and Lab/Internal Evaluation

OBJECTIVES:

The students should be made to

- Understand the basic concepts and techniques which form the object oriented programming

Remer	nber th	e opera	tor con	cepts									
				ng File con									
COURSE OU	TCOM	IES (C	(Os): S	tudents wil	l be able	to							
CO1	Under	nderstanding the Basic Concepts of object oriented programming. [L2]											
CO2	Gettir	etting Knowledge about Classes and Objects[L2]											
CO3	Impa	mparting skills on various kinds of overloading and inheritance concepts[L3]											
CO4	Desig	Design generic classes with C++ templates[L6]											
CO5	Devel	Develop an Application with C++ Techniques[L6]											
Mapping of Course Outcomes with Program Outcomes (POs)													
COs/POs	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12												
CO1	3	3	1	2	2	2	1	1	2	1	1	1	
CO2	3	2	2	2	2	2	1	2	2	2	1	1	
CO3	3	3	2	2	2	2	1	1	1	2	1	2	
CO4	3	2	2	2	1	2	2	1	2	2	1	2	
CO5	3	3	2	1	1	2	1	2	1	2	1	1	
COa / DCOa		PSO1		1	PSO2			DCO	2	<u> </u>	PSO4		
COs / PSOs				1			PSO3						
CO1		1			3			1		1			
CO2 CO3		<u>1</u> 2			3			1 2		1 1			
CO4		2			3			$\frac{2}{1}$		2			
CO5		1			3			1			1		
3/2/1 Indicate	s Stren	gth Of	Corre	lation, 3 –		2- Med	ium, 1						
Category	Basic Science	Engineering Science	nd social	Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project				
				√									

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	С
EBCS22ET3	OBJECT ORIENTED PROGRAMMING WITH C++	ETL	2	0/0	2/0	3

UNIT I 12Hrs

BASIC CONCEPTS OF OOPS: Programming methodologies - Object Oriented Concepts -Features & Applications of OOPS-Benefits of OOPS-Structure of C++ - C++ Tokens-Operators in C++ - Data types-Control statements - Arrays

UNIT II 12Hrs

Class & Objects: Classes and Objects-Abstraction-Encapsulation-Definition - Data members - Function members - Access Modifiers— Constructors - Types of Constructors— Destructors - Static members - Inline functions- Arrays of Object

UNIT III 12Hrs

INHERITANCE AND POLYMORPHISM: Overloading Operators - Rules for Operator overloading, - Function Overloading- Overloading Unary & Binary Operators - Friend Function - Virtual functions - Abstract Classes - Inheritance - Definition - Single Inheritance - Multiple Inheritance - Hierarchical Inheritance - Single Inheritance - Hybrid Inheritance -

UNIT IV 12Hrs

TEMPLATES & EXCEPTION HANDLING: Class Templates - Function Templates - Overloading Template Functions-Basics of Exception handling –Try-Catch-Throw – Rethrowing an Exception, Exception specifications, Processing Unexpected Exceptions-Error handling during File operations, Formatted I/O.

UNIT V 12Hrs

Files and Streams: Creating a Sequential Access File- Reading Data from A Sequential Access File, Updating Sequential Access Files-Random Access Files-Creating A Random Access File- Writing Data Randomly To a Random Access File- Reading Data Sequentially from a Random Access File. Stream Input/Output Classes and Objects, Stream Output, Stream Input, Unformatted I/O (with read and write), Stream Manipulators, Stream Format States, Stream Error States.

Total Hours: 60

TEXT BOOKS:

- 1. Stanley, B. Lippman (2012) The C++ Primer, (5th ed.), Addison Wesley
- 2.C++ How to Program by H M Deitel and P J Deitel, 1998, Prentice Hall

REFERENCES:

- 1. Stroustrup, B (2004) The C++ Programming Language, (3 rd ed.), Pearson Education
- 2. Balagurusamy, E (2008) Object Oriented Programming with C++, (4th ed.), Tata Mcgraw Hill

IV SEMESTER

COURSE CODE EBMA22011	COURSE NAME : Statistics for Computer Engineers	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	С
	Prerequisite: First year Engineering Mathematics	Ty	3	1/0	0/0	4

L: Lecture T: Tutorial S.Lr: Supervised Learning P: Project R: Research C: Credits

Ty/Lb/ETL/IE: Theory/Lab/Embedded Theory and Lab/Internal Evaluation

OBJECTIVES:

The students should be made to

- To understand the Basic concepts in Frequency distribution, Measures of Central Tendency and Relative Measures of Dispersion.
- To understand the Basic concepts in Random Events, Random variable and Probability.
- To understand the Basic concepts in Bi-variate data, Coefficient of Correlation and Regression.

 To under 				-					Corren	uion and	Regress	ion.		
				-		•			vpothes	is and C	ritical po	oints		
COURSE OU				-					- <i>J</i> p =		<u>F</u> -			
CO1	To un	derstan	d the B	asic co	ncepts i	n Statis	tics							
CO2	To un	derstan	d the B	asic coi	ncepts i	n Proba	bility							
CO3	To un	derstan	d the B	asic co	ncepts i	n Corre	lation							
CO4	To un	derstan	d the B	asic coi	ncepts i	n Proba	bility d	istributi	ons					
CO5		derstan												
	Course Outcomes with Program Outcomes (POs)													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	2	3	2	3	1	2	1	2	2	1	1	2		
CO2	3	3	1	2	2	2	2	2	1	1	2	2		
CO3	2	2	1	3	1	2	1	1	2	2	2	3		
CO4	3	2	1	3	1	1	2	2	1	1	1	3		
CO5	3	3	2	2	1	2	2	1	2	2	2	2		
COs / PSOs		PSO1			PSO2			PSO3	<u> </u>		PSO4			
CO1		2			1			3			1			
CO2					1			3			1			
CO2		2				1								
CO2		2 2						3			1			
CO3 CO4		2 2						3			1			
CO3 CO4 CO5		2 2 2			1 1 1			3 3 3						
CO3 CO4	s Stren	2 2 2	Correl	ation, .	1 1 1	h, 2- M	edium,	3 3 3			1			
CO3 CO4 CO5	Sasic Science	2 2 2	es and		1 1 3 – Hig	ctive	Inter Disciplinary	3 3 3	Practical /Project		1			

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	С
EBMA22011	STATISTICS FOR COMPUTER ENGINEERS	Ту	3	1/0	0/0	4

Course Outcomes:

To understand the Basic concepts in Statistics

To understand the Basic concepts in Probability

To understand the Basic concepts in Correlation

To understand the Basic concepts in Probability distributions

To understand the Basic concepts in Sampling theory

UNIT I BASICS OF STATISTICS

12 hrs

Variables – Uni-variate Data – Frequency Distribution – Measures of Central Tendency – Mean – Median – Mode – Quartiles – Measures of Dispersion – The Range – Mean deviation – Quartile Deviation – Standard Deviation – Relative Measures of Dispersion – Coefficient of Variation – Quartile Coefficient of Variation – Skewness and Kurtosis (Definition and Simple problems).

UNIT II PROBABILITY AND RANDOM VARIABLE

12 hrs

Axioms of Probability - Independent Events - Mutually exculsive Events - Conditional probability - Total probability - Baye's Theorem - Random variable - Probability mass function - Probability density function - Properties(Definition and simple problems).

UNIT III CORRELATION & REGRESSION

12 hrs

Bi-variate data – Applications of Correlation: Karl Pearson's Coefficient of Correlation – Rank Correlation: Spearman's Rank Correlation – Linear Regression.

UNIT IV STANDARD DISTRIBUTIONS

12 hrs

Binomial – Poisson – Geometric – Uniform – Exponential – Normal distributions.

UNIT V TESTING OF HYPOTHESIS

12 hrs

Tests of Significance – Null hypothesis – Alternative hypothesis – Critical points - Large Sample Tests – Mean proportions – Small Sample Tests – t, F, Chi-square Tests: Independence of Attributes, Goodness of Fit.

Total Hours: 60

Reference Books:

- 1) Veerarajan T., *Probability, Statistics and, Random Processes*, Tata McGraw Hill Publishing Co., (2008).
- 2) Singaravelu, *Probability and Random Processes*, Meenakshi Agency, (2017).
- 3) Gupta S.C., Kapoor V.K., Fundamentals of Mathematical Statistics, S.Chand& Co., (2007).
- **4)** Richard Johnson A., *Miller & Freund's Probability and statistics for Engineers* (9th ed), Prentice Hall of India, (2016).

COURSE CODE:		RSE N. IGN A		NALYS	SIS OF	ALGO	RITH	MS		Lb/ L/IE	L	T/S	.Lr	P/R	C
EBCS22004	Droroc	micita:	DATA S	трист	TIDEC					Cy	3	0/	'n	0/0	3
L : Lecture T :						ing P:	Project	R · I		•			U	U/U	
T/L/ETL/IE:						_					. 010	Cares			
OBJECTIVE															
The students	should	be mad	le to:												
• To Lea	arn the a	algorith	ım anal	ysis tec	chnique	s.									
• To und	lerstand	l the dif	fferent	algorith	ım desi	gn tech	niques.								
• To Une	derstan	d Iterati	ive algo	orithms											
• To Une	derstan	d the lii	mitatio	ns of A	lgorithi	n powe	r								
COURSE OU	JTCON	AES (C	COs): S	tudents	will be	able to)								
CO1	Under	stand t	he fund	amenta	als of al	gorithn	ns[L2]								
CO2	Analy	ze time	compl	exity o	f variou	ıs algor	ithms[I	<u>[</u> 4]							
CO3	Apply	the dif	ferent p	problen	n solvir	ng techr	iques t	o solv	e bas	sic ma	them	atical	l prol	olems[[L3]
CO4	Analy	sing th	ne struc	cture o	f tree	and gra	phs to	iden	tify	the li	mitati	ions	in so	olving	the
	proble	em[L4]													
CO5	Evalu	ate the	algorith	nms for	solving	g real w	orld ap	plicat	ions	[L5]					
Mapping of C	Course	Outcor	nes wit	th Prog	gram O	utcom	es (POs	s)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	3]	PO9	PO ₁		PO1	1 P	O12
CO1	3	3	2	2						2	2				2
CO2	3	3	3	1						3	2				2
CO3	3 2	3	3	1			1			3 2	2		1		2
CO4	2	3	3	1			1			4	4	'	1		2
CO5	2	3	3	1	1		1			2	2	;	1		3
COs / PSOs		PSO1			PSO2			PS	03				PSC)4	
CO1		3			3			-	1				1		
CO2		3			3				1				1		
CO3		3			2			,	2				2 2		
CO4		3			3			•	3				2		
CO5		3			3			(3				3		
3/2/1indicates	Stren	gth of (Correla	tion	3- High	h, 2- M	edium,	1-Lo	W		1				
		ses													
		Engineering Sciences	~ ×		ves		ľy	nt	ćt						
ry	ces	s Sc	Humanities and Social Sciences	ıre	Program Electives	ves	InterDisciplinary	Skill Component	Practical /Project						
Category	Basic Sciences	ring	ties	Program Core	EK	Open Electives	cipl	dm	[/P]						
Cate	Sc	nee	anil al S	ram	ram	ı Ei	Dis	Co	ical						
	asić	ngi	Human Social	rog	rog	per	ıter.	kill	ract						
									_						
	B	Щ	TS	✓			П	<i>S</i> 2							

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C
EBCS22004	DESIGN AND ANALYSIS OF ALGORITHMS	Ty	3	0/0	0/0	3

UNIT I BASIC CONCEPTS AND INTRODUCTION TO ALGORITHMS

9 Hrs

Introduction-Historical Background-Time Complexity-Space Complexity— Fundamentals of Algorithmic Problem Solving — Important Problem Types —Asymptotic Notations and their properties. Analysis Framework — Empirical analysis — Mathematical analysis for Recursive and Non-recursive algorithms — Visualization

UNIT II BRUTE FORCE AND DIVIDE-AND-CONQUER

9 Hrs

Brute Force – Closest-Pair and Convex Hull Problems-Exhaustive Search – Traveling Salesman Problem – Knapsack Problem – Assignment problem. Divide and conquer methodology – Merge sort – Quick sort – Binary search – Multiplication of Large Integers – Strassen's Matrix Multiplication-Closest-Pair and Convex Hull Problems.

UNIT III DYNAMIC PROGRAMMING AND GREEDY TECHNIQUE

Computing a Binomial Coefficient – Warshall's and Floyd' algorithm – Optimal Binary Search Trees – Knapsack Problem and Memory functions. Greedy Technique – Prim's algorithm- Kruskal's Algorithm- Dijkstra's Algorithm-Huffman Trees.

UNIT IV ITERATIVE IMPROVEMENT

9 Hrs

9 Hrs

The Simplex Method-The Maximum-Flow Problem – Maximm Matching in Bipartite Graphs- The Stable marriage Problem.

UNIT V COPING WITH THE LIMITATIONS OF ALGORITHM POWER 9 Hrs

Limitations of Algorithm Power-Lower-Bound Arguments-Decision Trees-P, NP and NP-Complete Problems-Coping with the Limitations – Backtracking – n-Queens problem – The 3-Coloring Problem-Hamiltonian Circuit Problem – Subset Sum Problem-Branch and Bound – Assignment problem – Knapsack Problem – Traveling Salesman Problem- Approximation Algorithms for NP – Hard Problems – Traveling Salesman problem – Knapsack problem.

Total Hours: 45

TEXT BOOK:

- 1. AnanyLevitin, "Introduction to the Design and Analysis of Algorithms", Third Edition, Pearson Education, 2012.
- 2. M. H. Alsuwaiye, "Voronoi Diagrams", Third Edition, World Scientific.

REFERENCE BOOKS:

- 1. Thomas H.Cormen, Charles E.Leiserson, Ronald L. Rivest and Clifford Stein, "Introduction to Algorithms", Third Edition, PHI Learning Private Limited, 2012.
- 2. Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ullman, "Data Structures and Algorithms", Pearson Education, Reprint 2006.
- 3. Donald E. Knuth, "The Art of Computer Programming", Volumes 1& 3 Pearson Education, 2009. Steven S. Skiena, "The Algorithm Design Manual", Second Edition, Springer, 2008.
- 4. http://nptel.ac.in/

COURSE CODE EBCS22005	COURSE NAME: OPERATING SYSTEM	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	С
	Prerequisite: Computer Organization and Architecture	Ty	3	0/0	0/0	3

L: Lecture T: Tutorial S.Lr: Supervised Learning P: Project R: Research C: Credits

Ty/Lb/ETL/IE: Theory/Lab/Embedded Theory and Lab/Internal Evaluation

OBJECTIVES:

The students should be made to

- understand the concepts of Operating System and process.
- Illustrate the Scheduling of a processor for a given problem instance, identify the dead lock situation and provide appropriate solution, analyze memory management techniques and implement page replacement Algorithm, understand the implementation of file systems and directories.

Algor	ithm, und	derstand	the impl	ementat	ion of fil	le systen	ns and di	rectorie	s.			
 apprec 	ciate eme	erging tre	ends in o	perating	systems	S.						
COURSE OU	JTCOM	ES (COs	s): Stude	nts will	be able t	to						
CO1	Remei	mber and	Unders	tand fun	ctions, s	tructure	s and his	tory of	operating s	ystems[L	1]	
CO2	Analy	ze variou	ıs functio	ons of C	PU proc	essing a	lgorithm	s[L4]				
CO3	Under	stand the	concept	t of haza	ırd and a	nalyze v	vith prev	ention p	process[L2]		
CO4	Analy	ze variou	is memo	ry mana	gement	schemes	[L4]					
CO5	Apply	the func	tionality	of file s	systems[L3]						
Mapping of (Course O	utcome	s with P	rogram	Outcon	nes (POs	s)					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	1	1	1		1		2	1
CO2	3	3	2	1	1	1				1	2	2
CO3	3	3	3	1	2	1			1		1	
CO4	3	3	3	1	1	2	1			1		
CO5	3	3	3	2	2	2			1	1		
COs / PSOs		PSO1			PSO2			PSC)3		PSO4	_
CO1		3			3			2			2	
CO2		3			3			1			2	
CO3		3			3			3			3	
CO4		3			3			2			3	
CO5		3		L	3			2			2	
3/2/1 Indicate	es Streng	th Of C		on, 3 – I	ligh, 2-	Mediun	n, 1- Lov	W			1	
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	✓ Program Core	Program Electives	Open Electives	InterDisciplinary	Skill Component	Practical /Project			
				•								

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	С
EBCS22005	OPERATING SYSTEM	Ту	3	0/0	0/0	3

UNIT I 9 Hrs

CONCEPTS & PROCESSES

Introduction -Computer system architecture-operating system structure-operations-management of process, memory, storage-protection and security-Operating System Services-System Calls-types-System Programs-System Structure-Virtual Machines-System Design and Implementation- Process Concept-Process Scheduling-Operation on Process-Cooperating Processes- Inter Process Communication

UNIT II 9 Hrs

PROCESS MANAGEMENT, SYNCHRONIZATION AND DEADLOCKS

Threads-Multithreading Models. CPU Scheduling Concepts-Scheduling Criteria-Scheduling Algorithms-Threads and Multiple-Processor Scheduling-Real Time Scheduling- - Process Synchronization-The Critical Section Problem-Synchronization-Peterson solution, mutex-Hardware-Semaphores Monitor-Deadlocks-Deadlock Characterization-Methods of Handling Deadlocks-Deadlock Prevention-Deadlock Avoidance-Deadlock Detection-Recovery form Deadlock

UNIT III 9 Hrs

MEMORY MANAGEMENT

Main Memory-Swapping-Contiguous Memory Allocation - Address Translation - Paging - Segmentation - Virtual Memory-Demand paging-page replacement-thrashing-allocating Kernel memory.

UNIT IV 9 Hrs

STORAGE MANAGEMENT

Files And Secondary Storage Management: File Concepts - Access Methods - Directory Structure - File System Mounting - File Sharing - Protection - File System Structure - Implementation - Recovery - Disk Structure - Disk Scheduling - Disk Management- I/O Systems

UNIT V 9 Hrs

CASE STUDY

Linux System — Design Principles, Kernel Modules, Process Management, Scheduling, Memory Management, Input-Output Management, File System, Inter-process Communication; Network Structure, Security. Windows 10 - Design Principles, System Components, Terminal Services and fast user switching, File System, Networking, Programmer Interface.

Total Hours: 45

TEXT BOOKS:

1.Abraham Silberschatz, Peter B. Galvin, Greg Gagne(2018) Operating System Concepts (10th ed.), ISBN: 978-1-119-32091-3

REFERENCE BOOKS:

- 1. D.M.Dhamdhere. D. M. (2012) Operating Systems, (3 rd ed.), Tata McGraw Hill
- 2. Tanenbaum (2015) Modern Operating Systems, Pearson Publication.

William Stallings (2015) Operating Systems (8 th ed.) Prentice Hall of India

	COU	RSE NA	AME:						7F/T 1-/					
CODE: EBEC22ID2	MICR	OPROC	ESSOR	S AND I	MICRO	CONTR	OLLER	S	Ty/Lb/ ETL/II		L	T/S.Lr	P/R	C
	Prerequ	isite: DI	GITAL I	PRINCIE	PLES AN	D SYST	EM DES	SIGN	TY	3	3	0/0	0/0	3
L : Lecture T						_				C: C	cred	its		
T/L/ETL/IE:		<u>/Lab/En</u>	nbedde	d Theo	ry and l	Lab/Int	ernal Ev	valuat	ion					
OBJECTIVE														
The students							1.0		0.1			•		
									of the p	roces	ssor	s and co	ntrollei	rs.
	To lear To desi													
		_			_			_	devices	with	nro	ncessors		
COURSE OU							ne perip	niciai	devices	vv 1t11	ргс	<i></i>		
CO1		ibe the					ssor							
CO2	Demo	nstrate	the pro	gramm	ing in r	nicropr	ocessor							
CO3									with the	micr	ropr	ocessors	}	
CO4									me proce					
CO5		ate the	•											
Mapping of C	L					utcome	es (Pos)							
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	POS	PC	9	PO	10 PO	11 P	O12
CO1	2	3	3	3	2	1	1	2			2			2
CO2	3	3	3	3	2	1	2	2			2			2
CO3	2	3	3	3	3	2	2	2			3			2
CO4	3	3	3	3	3	1	2	2	. 2	;	2		2	3
			2	2	2	4	2	2			1		,	
CO5	3	3	3	3	3	1	2	2	1		1	1 3	3	3
			3	3	3 PSO2	1	2		SO3		1		3 SO4	3
CO5 Cos/PSOs CO1		3 PSO1 3	3	3	PSO2	1	2	PS	3		1	PS	5O4 1	3
CO5 Cos/PSOs CO1 CO2		3 PSO1 3 2	3	3	PSO2 3 3	1	2	PS	3 3		1	PS	5O4 1 1	3
CO5 Cos/PSOs CO1 CO2 CO3		3 PSO1 3 2 3	3	3	PSO2 3 3 3	1	2	PS	3 3 3 3		1	PS	5O4 1 1 2	<u>3</u>
CO5 Cos/PSOs CO1 CO2 CO3 CO4		3 PSO1 3 2 3 3	3	3	PSO2 3 3 3 3 3	1	2	PS	3 3 3 3 3		1	PS	504 1 1 2 1	
CO5 Cos /PSOs CO1 CO2 CO3 CO4 CO5	3	3 PSO1 3 2 3 3 2			PSO2 3 3 3 3 3 3			PS	3 3 3 3		1	PS	5O4 1 1 2	
CO5 Cos/PSOs CO1 CO2 CO3 CO4	3	3 PSO1 3 2 3 3 2			PSO2 3 3 3 3 3 3			PS	3 3 3 3 3		1	PS	504 1 1 2 1	
CO5 Cos /PSOs CO1 CO2 CO3 CO4 CO5	3	3 PSO1 3 2 3 3 2	Correlat		PSO2 3 3 3 3 3 3			PS	3 3 3 3 3		1	PS	504 1 1 2 1	
CO5 Cos /PSOs CO1 CO2 CO3 CO4 CO5	3	3 PSO1 3 2 3 3 2	Correlat		PSO2 3 3 3 3 -High,		ium, 1-	Low	3 3 3 3 3 3 3		1	PS	504 1 1 2 1	
CO5 Cos /PSOs CO1 CO2 CO3 CO4 CO5 3/2/1 Indicates	3 s Streng	3 PSO1 3 2 3 3 2	Correlat	ion, 3 -	PSO2 3 3 3 3 -High,	2- Med	ium, 1-	Low	3 3 3 3 3 3 3		1	PS	504 1 1 2 1	
CO5 Cos /PSOs CO1 CO2 CO3 CO4 CO5 3/2/1 Indicates	3 s Streng	3 PSO1 3 2 3 3 2 2th Of C	orrelation purions pur	ion, 3 -	PSO2 3 3 3 3 -High,	2- Med	ium, 1-	Low	3 3 3 3 3 3 3		1	PS	504 1 1 2 1	
CO5 Cos /PSOs CO1 CO2 CO3 CO4 CO5 3/2/1 Indicates	3 s Streng	3 PSO1 3 2 3 3 2 2th Of C	orrelation purions pur	Core	PSO2 3 3 3 3 -High,	2- Med	ium, 1-	Low	3 3 3 3 3 3 3		1	PS	504 1 1 2 1	
CO5 Cos /PSOs CO1 CO2 CO3 CO4 CO5	3 s Streng	3 PSO1 3 2 3 3 2 2th Of C	orrelation purions pur	Core	PSO2 3 3 3 3 3 3	2- Med	ium, 1-	Low	3 3 3 3 3 3 3		1	PS	504 1 1 2 1	
CO5 Cos /PSOs CO1 CO2 CO3 CO4 CO5 3/2/1 Indicates	3	3 PSO1 3 2 3 3 2	orrelation purions pur	Core	PSO2 3 3 3 3 -High,			PS	3 3 3 3 3			PS	504 1 1 2 1	

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C
EBEC22ID2	MICROPROCESSORS AND MICROCONTROLLERS	Ту	3	0/0	0/0	3

UNIT I: THE 8086 MICROPROCESSORS

9 Hrs

 $Introduction\ to\ 8086-Microprocessor\ architecture-Addressing\ modes-Instruction\ set\ and\ assembler\ directives-Assembly\ language\ programming$

UNIT II:8086 SYSTEM BUS STRUCTURE

9 Hrs

8086 signals – Basic configurations – System bus timing –System design using 8086 – I/O programming – Introduction to Multiprogramming – System Bus Structure – Multiprocessor configurations – Coprocessor, closely coupled and loosely Coupled configurations

UNIT III I/O INTERFACING

9 Hrs

Memory Interfacing and I/O interfacing – Parallel communication interface – Serial communication interface – D/A and A/D Interface – Timer – Keyboard /display controller – Interrupt controller – DMA controller

UNIT IV: MICROCONTROLLER

9 Hrs

Architecture of 8051 – Special Function Registers (SFRs) – I/O Pins Ports and Circuits – Instruction set – Addressing modes.

UNIT V: INTERFACING MICROCONTROLLER

9 Hrs

Programming 8051 Timers – Serial Port Programming – Interrupts Programming – LCD & Keyboard Interfacing – ADC, DAC & Sensor Interfacing – External Memory Interface- Stepper Motor and Waveform generation.

Total Hours: 45

TEXT BOOKS:

1. Yu-Cheng Liu, Glenn A.Gibson, —Microcomputer Systems: The 8086 / 8088 Family —

Architecture, Programming and Design, Second Edition, Prentice Hall of India, 2007.

2. Mohamed Ali Mazidi, Janice GillispieMazidi, Rolin McKinlay, —The 8051 Microcontroller and Embedded Systems: Using Assembly and CI, Second Edition, Pearson education, 2011.

REFERENCES:

- 1. Doughlas V. Hall, —Microprocessors and Interfacing, Programming and Hardware , TMH, 2012
- 2. A.K.Ray, K.M.Bhurchandi, "Advanced Microprocessors and Peripherals" 3rd edition, Tata McGrawHill, 2012

COURSE CODE: EBCC22I04	COURSE NAME THE INDIAN CONSTITUTION (Audit Course)	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C			
	Prerequisite: NIL	IE	2	0/0	0/0	0			
L : Lecture T : Tutorial S.Lr : Supervised Learning P : Project R : Research C: Credits T/L/ETL/IE : Theory/Lab/Embedded Theory and Lab/Internal Evaluation									
OBJECTIVES:									

1/L/E1L/IE: Theol	ry/Lab/Eii	ibedded 1	neory ar	na Lab	miem	ai Evait	iation							
OBJECTIVES:														
The students shoul	ld be mad	le to												
 To providea 								1						
 To understa 	•													
• To Know th		_				• •								
To understa						executiv	eand th	ejudiciary						
COURSE OUTCO	OMES (Co	s): Stude	nts will l	be able	e to									
CO1	To provid	eanoverv	iew of th	ehisto	ryofthei	makingo	fIndian	Constitutio	on					
CO2	To unders	tandthepi	reamblea	ndtheb	asic str	uctures o	oftheCo	nstitution.						
CO3	To Know	the funda	mentalri	ghts, d	lutiesan	dthedire	ctivepri	nciplesof	state po	olicy				
Mapping of Cours	e Outcom	es with I	Program	Outco	omes (I	Pos)								
Cos/Pos	DO1	DO2	DO2	DO4	DO5	DO(DO7	DO0	DO0	DO10	DO11	DO12		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	POIU	POII	PO12		
CO1		3 1 1 1												
CO2						3	1	1	1	1				
CO3						3	1	1	2					
Cos / PSOs	PS	SO1	PS	SO2	F	PSO3	P	PSO 4						
CO1	1		1	-		2		3						
CO2	1		1	-		2		2						
CO3	1		1	-		2		1						
3/2/1 indicates Stre	ength of C	orrelatio	on 3- H	igh, 2-	Mediu	ım, 1-Lo	W		l.					
			al									<u> </u>		
			oci		ive		5	t t		;				
	စ္		Humanities and social Science		Program elective		Inter Disciplinary	Skill Component		Practical /Project				
ory	Basic Science	<u>50</u>	s ar	ore	n el	tive	Idia	odu		/Pro				
Category	Sci	erin	itie	n C	ran	Jec)isc	Con		cal				
Cat	sic	ine	nan	grar	rog	n E	er I) III		actio				
	Ba	Engineering Science	Humani Science	Program Core	4	Open Elective	Int	Sk		Pr				
			~ ·				√					1		

3/2/1 indicates Stro	ength of C	orrelatio	on 3- Hi	gn, 2-	Mean	ım, 1-Low					
Category	Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project		
			✓				✓				

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	С
EBCC22I04	THE INDIAN CONSTITUTION (Audit Course)	IE	2	0/0	0/0	0

UNIT I 6Hrs

The HistoryoftheMakingof IndianConstitution, Preamble and the BasicStructures

UNIT II 6Hrs

FundamentalRightsand Duties, Directive Principles of State Policy

UNIT III 6Hrs

Legislature, Executive and Judiciary

UNIT IV 6Hrs

EmergencyPowers

UNIT V 6Hrs

Special Provisions for Jammu and Kashmir, Nagalandand Other Regions, Amendments

Total Hours: 30

TEXT BOOKS:

1. D DBasu, Introductiontothe Constitutionof India, 20th Edn., Lexisnexis Butterworths, 2012.

REFERENCE BOOKS:

- 1.Rajeev Bhargava(ed), Ethics and Politics of the Indian Constitution, Oxford University Press, NewDelhi, 2008.
- 2. Granville Austin, The Indian Constitution: Cornerstone of a Nation, Oxford University Press, Oxford, 1966.
- 3. Zoya Hassan, E. Sridharan and R. Sudarshan (eds), India's Living Constitution: Ideas, Practices, Controversies, Permanent Black, New Delhi, 2002.
- 4. Subhash C. Kashyap, Our Constitution, National Book Trust, New Delhi, 2011.

COURSE CODE EBCC22I05	7		NDIA	AME: N TRAD GE (Aud					Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	С	
	I	Prerequ	iisite:	NIL					IE	2	0/0	0/0	0	
L : Lecture T : Tut T/L/ETL /IE: The		-			_				C: Credit	S				
OBJECTIVES: T				<u> </u>										
he students shou		de to												
 To underst 	tand the Pr	e- colo	nial a	nd Coloni	ial Pe	riod, Ir	ndian Tı	aditio	nal Know	ledg	e System	1		
 To underst 											_			
• To Know			ysics a	and Chem	istry,	Tradit	ional A	rt and	Architect	ure a	and Vastu	ıShashtı	ra,	
_		d Astrology the Origin of Mathematics, Aviation Technology in Ancient India, Crafts and Trade in												
		I the Origin of Mathematics, Aviation Technology in Ancient India, Crafts and Trade in												
		IES (COs): Students will be able to												
CO1	To unders	tand th	e Pre-	colonial	and (Colonia	l Period	l, India	an Traditi	onal	Knowled	dge Syst	em	
CO2	To unders	understandtheTraditional Medicine, Traditional Production and Construction Technology												
CO3		o understand the Origin of Mathematics, Aviation Technology in Ancient India, Crafts and rade in Ancient India												
Mapping of Cour	se Outcon	ies wit	h Pro	gram Ou	itcom	nes (Po	s)							
COs/Pos	PO1	PO2	PO3	PO4		PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1		3	3	1			2				2		1	
CO2		3	3	1			2				2		1	
CO3		3	3	1			2				2		1	
COs / PSOs]	PSO1		PSO	02	P	SO3	P	SO4					
CO1		1		1			2		2					
CO2		1		1			2		1					
CO3		1		1			2		3					
3/2/1 indicates Str	rength of (ation	3- High	, 2- N	Iediun		W						
	I	1		anities and 1 Science am Core				>	t l					
Category	Basic Science	Engineering Science		Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project				

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	С
EBCC22I05	THE INDIAN TRADITIONAL KNOWLEDGE (Audit Course)	IE	2	0/0	0/0	0

UNIT I 6Hrs

Historical Background: TKS During the Pre-colonial and Colonial Period, Indian Traditional

Knowledge System

UNIT II 6Hrs

Traditional Medicine, Traditional Production and Construction Technology

UNIT III 6Hrs

History of Physics and Chemistry, Traditional Art and Architecture and VastuShashtra, Astronomy and Astrology

UNIT IV 6Hrs

Origin of Mathematics, Aviation Technology in Ancient India, Crafts and Trade in Ancient India

UNIT V 6Hrs

TKS and the Contemporary World, TKS and the Indian Union, TKS and IT Revolution

Total Hours: 30

TEXT BOOKS:

- 1. Amit Jha (2009), Traditional knowledge system in india, 1st Edition, Delhi University (North Campus)
- 2. Dr.A.K.Ghosh (2011), Traditional Knowledge of Household Products

COURSE CODE: EBEC22IL2	COURSE NAME: MICROPROCESSORS AND MICROCONTROLLERS LAB	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C
	Prerequisite: DIGITAL SYSTEMS LAB	Lb	0	0/0	3/0	1
	orial S.Lr: Supervised Learning P: Project leory/Lab/Embedded Theory and Lab/Internal F		h C:	Credits		

L: Lecture T: T Ty/Lb/ETL/IE:			-		_	-				redits		
OBJECTIVES:												
The students sh		made	to									
To learn	the ass	embly l	anguag	e progr	ammin	g of 80	86.					
• To learn		•				_						
								vices w	ith proces	sors		
COURSE OUT	COME	ES (Cos	s): Stud	lents wil	ll be abl	e to						
CO1	Abilit	y to uno	derstand	d the Pr	ogramr	ning of	8086 n	nicropro	ocessor			
CO2	Abilit	y to uno	derstand	d the Pr	ogramr	ning of	8051 n	nicroco	ntroller			
CO3	Under	stand tl	he appli	cations	of mic	roproce	essors &	z micro	controller	'S		
Mapping of Co	urse O	utcome	es with	Progra	m Out	comes	(Pos)					
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	1	2	1	1	1	1	1	1	2
CO2	3	2	1	1	2	1	1	1	1	1	1	2
CO3	3	2	1	1	2	1	1	1	1	1	1	2
Cos / PSOs	PS	O1	PS	O2	PS	О3	P	SO4				
CO1	~	3	2	2	1	1		1				
CO2	3	3	2	2	1	1		1				
CO3	3	3	2	2	1	1		1				
3/2/1 Indicates S	strength	of Co	rrelatio	n, 3 – F	ligh, 2-	Mediu	m, 1- L	ow	·			
Category	Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project			
Саі							√		✓			

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	С
EBEC22IL2	MICROPROCESSORS AND MICROCONTROLLERS LAB	Lb	0	0/0	3/0	1

Inter disciplinary Lab II- Microprocessor and Microcontrollers

LIST OF EXPERIMENTS:

8086 Programs using kits/MASM

- 1. Basic arithmetic and Logical operations
- 2. Move a data block without overlap
- 3. sorting and searching

Peripherals and Interfacing Experiments

- 4. Traffic light controller
- 5. Stepper motor control
- 6. Key board and Display
- 7. Serial interface and Parallel interface
- 8. A/D and D/A interface and Waveform Generation

8051 Experiments using kits/ MASM

- 9. Basic arithmetic and Logical operations
- 10. Move a data block without overlap
- 11.sorting and searching

8086/8051 Programs using kits/MASM

12. Code conversion, decimal arithmetic and Matrix operations.

Total Hours:45

COURSE CODE: EBCS22L03		RSE N [GN A]		IALYS LA		ALGO	RITH	MS	Ty/L ETL		L	T/S.	Lr	P/R	С
	Prerec	quisite:	DATA S	STRUC	ΓURES 1	LAB			Lt)	0	0/0	0 3	8/0	1
L : Lecture T :	Tutori	al S.l	Lr : Sup	pervise	d Learn	ning P	: Projec	et R	Resea	arch C	C: C:	redits	•		•
T/L/ETL /IE: '	Theory	/Lab/E	mbedde	ed The	ory and	Lab/Ir	nternal	Evalu	ation						
OBJECTIVE:															
The students sh															
• Teach					_										
						ormano		gorith	ıms						
COURSE OU								.1		1				- 47	
CO1	Desig	n and a	ınalyze	the per	rtormai	nce of a	ılgorith	ms th	at emp	oloy v	arıo	ous str	ategy[I	_4]	
CO2	Δnnls	the fu	ndamei	ntal alo	orithm	s of sor	ting to	solve	nrohl	ems [I 31				
CO2	Appry	uic iu	iidaiiici	itai aig	OHUIIII	3 01 301	ting to	30110	proor	CIIIS [.	L3]				
CO3	Analy	ze the	average	e-case 1	unning	times	of rand	omiz	ed algo	orithn	ns, a	and sh	ortest 1	ath	
	algori	thms[L	4]						_						
CO4	Evalu	ate and	apply	ly classical sorting, searching, optimization and graph algorithms[L5								5]			
CO5					and Binary search algorithm to solve problems[L3]										
Mapping of C	Course	Outco	mes wi		~		nes (Po	s)							
Cos/Pos	PO1	PO2			PO5			PO	3	PO9	P	O10	PO11	P	O12
CO1	3	3	3	2	1	1	1	,	2	1		1	2		1
CO2	3	3	2	1	2	1	2	2	2	3		2	2		2
CO3	2	2	2	3	3	2	1	Ź	2	3		1	2		2
CO4	3	2	2	2	2	1	2	Ź	2	3		2	2		2
CO5	3	2	1	3	1	2	3	,	2	2		1	1		1
Cos / PSOs		PSO1			PSO2			P	SO3				PSO	4	
CO1		3			3				3				2		
CO2		3			3				2				1		
CO3		2			2				2				3		
CO4		3			2				2				2		
CO5		3			2				1				3		
3/2/1 indicate	s Stren	gth of	Correl	lation	3- Hi	gh, 2- I	Mediur	n, 1-l	Low						
		e	ial												
		Science	SOC		ive		L.	ıt	+						
ry.	بو	Sci	s pu	4)	ect	4)	ina jina jina jina								
ogo	enc		s aı	ore	ı el	tive	ipl	odu	/Pro						
Category	Sci	erin	itie	n C	ran	lec)isc] Jon	cal						
	Basic Science	ine	nan:	ŗrar	Program elective	n E	er I	Skill Component	ctic						
	Bas	Engineering	Humanities and social	Program Core	Pı	Open Elective	Inter Disciplinary	Ski	Practical /Project						
		<u> </u>	T.						√					+	
				•					•						

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C
EBCS22L03	DESIGN AND ANALYSIS OF ALGORITHMS LAB	Lb	0	0/0	3/0	1

List of Experiments

- 3. Sort a given set of elements using the Quick sort method and determine the time required to sort the elements. Repeat the experiment for different values of n, the number of elements in the list to be sorted. The elements can be read from a file or can be generated using the random number generator.
- 4. Write a program to analyse all the complexity of Strassen matrix with minimum matrix size of 4*4
- 5. Compute the transitive closure of a given directed graph by using Warshall's algorithm.
- 6. Implement All-Pairs Shortest Paths Problem using Floyd's algorithm.
- 7. Implement any scheme to find the optimal solution for the Traveling Salesperson problem and then solve the same problem instance using any approximation algorithm and determine the error in the approximation.
- 8. To write a program to solve the knapsack problem using greedy method.
- 9. From a given vertex in a weighted connected graph, find shortest paths to other vertices using Dijkstra's algorithm.
- 10. Find Minimum Cost Spanning Tree of a given undirected graph using Kruskal's algorithm.
- 11. Implement N Queen's problem using Back Tracking.

Total Hours:45

COURSE CODE EBCS22L04	COURSE NAME: OPERATING SYSTEM LAB	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	С
EDCS22LU4	Prerequisite: DBMS LAB	Lb	0	0/0	3/0	1

 $L: Lecture \ T: Tutorial \quad S.Lr: Supervised \ Learning \ P: Project \ R: Research \ C: Credits$

Ty/Lb/ETL/IE: Theory/Lab/Embedded Theory and Lab/Internal Evaluation

OBJECTIVES:

The students should be made to

- To learn to Create processes and implement IPC
- To learn to use system calls through C programs
- To learn to use the file system related system calls
- To gain knowledge to Analyze the performance of the various Page Replacement Algorithms

U		U	•					0		ment Aiş	goriumis	
							Allocatio	on Strate	egies			
COURSE OU	JTCON	IES (C	os): Stu	dents w	ill be al	ole to						
CO1	Under	stand p	rocesses	conce	ot and in	npleme	nt IPC[]	L2]				
CO2	Under	stand a	nd apply	y Deadl	ock avo	idance a	and Det	ection A	lgorithm	ns[L3]		
CO3	Analy	ze the 1	perform	ance of	various	CPU S	cheduli	ng Algo	rithms[L	<i>A</i>]		
CO4	Analy	ze the p	erforma	ance of	the vari	ous Pag	ge Repla	cement	Algorith	ms[L4]		
CO5	Apply	File O1	rganizat	ion and	File Al	location	n Strateg	gies[L3]				
Mapping of O	Course	Outcon	nes with	n Progr	am Ou	tcomes	(Pos)	_	_		_	
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	1				2	2	2		2
CO2	3	2	3	1	1			2	2	2	1	3
CO3	2	3	3	1				1	3	3	1	3
CO4	2	3	3	1	1	1		2	3	3	1	3
CO5	3	3	3	1	1	1		3	3	2	1	3
Cos / PSOs		PSO1			PSO2			PSO	3		PSO4	
CO1		3			2			3			2	
CO2		3			3			2			3	
CO3		3			2			2			2	
CO4		3			3			3			1	
CO5		3			1			2			1	
3/2/1 Indicate	es Stren	gth Of	Correl	ation, 3	6 – High	, 2- Me	edium, i	1- Low				
Category	Basic Science Humanities and social Science Program Core Inter Disciplinary Skill Component Skill Component Practical / Project											
				√					✓			

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C
EBCS22L04	OPERATING SYSTEM LAB	Lb	0	0/0	3/0	1

LIST OF EXPERIMENTS:

- 1. Basic UNIX commands learning and usage.
- 2. Shell Programming.
- 3. File system related system calls. (Learn to create, open, read, write, seek into, close files & open, read, write, search, close directories).
- 4. Process management Fork, Exec (Learn to create a new process and to overlay an executable binary image on an existing process).
- 5. Process synchronization using semaphores (Solutions to synchronization problems like producer consumer problem, dining philosopher's problem etc...).
- 6. Inter-process communication among unrelated processes using shared memory.
- 7. CPU Scheduling algorithms.
- 8. Implementation of Deadlock Detection Algorithm
- 9. Contiguous memory allocation strategies best fit, first fit and worst fit strategies.
- 10. Page replacement algorithms

Total Hours:45

COURSE CODE	COUR	SE NAI	ME:						Ty/L	.h/					
EBCS22ET4			JAVA	PROG	RAMM	IING			ETL/		L	T/S.I	Lr	P/R	С
		uisite: C							ETI		2	0/0)	2/0	3
L : Lecture T : Ty/Lb/ETL/IE			•		_				C: Cre	dits					
OBJECTIVES		y/ Lao/ Li	nocaacc	1 Theory	and Lac	<i>5/</i> 111(C111)									
The students s		e made t	0												
				and tech	niques v	vhich for	rm the o	bject-o	riented	prog	ramn	ning co	oncept	ts.	
		ed progra	_		_			3		1 0			•		
COURSE OU		`													
CO1	Under	standing	about C	bject O	riented P	rogramı	ning cor	ncepts a	ınd bas	sic cha	aract	eristics	of Ja	va[L2]
CO2	Impart	ing the p	principle	s of pac	kages, in	heritanc	ce and in	terface	s[L3]						
CO3	To def	ine exce	ptions a	nd use I	O stream	ns[L4]									
CO4	Develo	oping a j	ava appl	lication	with thre	ads and	generics	s classe	s[L6]						
CO5	Design	ning and	building	g simple	Graphic	al User	Interface	es[L6]							
Mapping of C															
COs/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	I	PO9	PO	D10	PO11	PO	D12
CO1	3	3	1	2	2	2	1	1		2		1	1		1
CO2	3	3	2	2	2	2	1	2		2		2	1		1
CO3	3	3	3	2	2	2	1	1		1		2	1		2
CO4	3	3	2	2	1	2	2	1		2		2	1		2
CO5	3	3	2	1	1	2	1	2		1		2	1		1
COs / PSOs		PSO1	!		PSO2	ı		PS	O3			"	PSC	94	
CO1		3			3			3	3				3		
CO2		3			2			2	2				3		
CO3		3			3			3					3		
CO4		2			3			2	2				2		
CO5		1			3			1	[1		
3/2/1 Indicates	Streng	th Of C		on, 3 – 1	High, 2-	Mediu	m, 1- Lo	W		1					
Category	Basic Science	Engineering Science	Humanities and Social Science	▼ Program Core	Program Elective	Open Elective	Inter Disciplinary	Skill Component	Practical / Project						

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	С
EBCS22ET4	JAVA PROGRAMMING	ETL	2	0/0	2/0	3

UNIT I 12 Hrs

INTRODUCTION TO OOP AND JAVA FUNDAMENTALS: Object Oriented Programming – Abstraction – objects and classes – Encapsulation- Inheritance – Polymorphism- OOP in Java – Features of Java – The Java Environment – Java Source File -Structure – Compilation-Fundamental Programming Structures in Java – Defining Classes and Objects in Java – Constructors- Methods -Access specifiers – static members - Comments, Data Types, Variables, Operators, Control Flow, Arrays.

UNIT II 12Hrs

INHERITANCE AND POLYMORPHISM: Inheritance – Super classes – sub classes – Protected members – constructors in sub classes – the Object class – abstract classes and methods – final methods and classes – Interfaces – Defining an interface-Implementing interface- Differences between classes and interfaces and extending interfaces – Object cloning -Inner Classes-Array Lists – Strings and its Functions

UNIT III 12Hrs

EXCEPTION HANDLING & STREAMS: Exceptions – Exception hierarchy – Throwing and catching Exceptions – Built-in exceptions- Creating own exceptions, Stack Trace Elements-Input / Output Basics – Streams – Byte streams and Character streams – Reading and Writing Console – Reading and Writing Files

UNIT IV 12 Hrs

MULTITHREADING AND GENERIC PROGRAMMING: Multithreading Definition-Differences between Multi-threading and Multitasking-Thread- Thread life cycle- Creating threads-Synchronizing threads-Interthread communication, Daemon threads- Thread groups-Generic Programming – Generic classes – generic methods – Bounded Types – Restrictions and Limitations.

UNIT V 12Hrs

EVENT DRIVEN PROGRAMMING: Graphics programming – Frame – Components – working with 2D Shapes – Using color, fonts, and images – Basics of event handling – event handlers – adapter classes -actions – mouse events – AWT event hierarchy – Introduction to Swing – layout management – Swing Components – Text Fields, Text Areas – Buttons- Check Boxes – Radio Buttons – Lists- choices Scrollbars – Windows – Menus – Dialog Boxes.

Total Hours: 60

TEXT BOOKS:

Herbert Schildt, "Java The complete reference", 8th Edition, McGraw Hill Education, 2011.
 Cay S. Horstmann, Gary cornell, "Core Java Volume –I Fundamentals", 9th Edition, Prentice Hall, 2013.

REFERENCES:

- 1. Paul Deitel, Harvey Deitel, "Java SE 8 for programmers", 3rd Edition, Pearson, 2015.
- 2. Programming with Java E. BalagurusamyTataMc-Graw Hill, 5th Edition New Delhi.
- 3. Steven Holzner, "Java 2 Black book", Dreamtech press, 2011.
- 4. Timothy Budd, "Understanding Object-oriented programming with Java", Updated Edition, Pearson Education, 2000.

COURSE CODE: EBCS22I01	COURSE NAME: TECHNICAL SKILL I	Ty/Lb/ ETL/IE	L	T/S. Lr	P/R	C
	Prerequisite: Nil	IE	0	0/0	2/0	1

L: Lecture T: Tutorial S.Lr: Supervised Learning P: Project R: Research C: Credits

Ty/Lb/ETL/IE: Theory/Lab/Embedded Theory and Lab/Internal Evaluation

OBJECTIVES:

The students should be made to

- To make the students expert in domain specific knowledge.
- To develop professionals with idealistic, practical and moral values.
- To facilitate the students with emerging technology

CO1	Understand the domain specific knowledge.
CO2	Able to apply idealistic, practical and moral values.
CO3	Familiarize with emerging technology

Mapping of Course Outcomes with Program Outcomes (Pos)

Cos/Pos	PO	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	1	1	2	2	1	1	1	3	1
CO2	3	3	2	3	3	2	2	2	2	2	3	1
CO3	3	3	3	3	3	2	2	1	2	2	3	1
Cos /PSOs	PS	SO1		PSC	D2	I.		PSO3			PSO4	
CO1		3		3				1			1	
CO2		3		3				1				
CO3		3		3				1				

3/2/1indicates Strength of Correlation 3- High, 2- Medium, 1-Low

Category	Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project
								✓	✓

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C
EBCS22I01	TECHNICAL SKILL I (EVALUATION)	IE	0	0/0	2/0	1

OBJECTIVES:

- To make the students expert in domain specific knowledge.
- To develop professionals with idealistic, practical and moral values.
- To facilitate the students with emerging technology.

From the list of skill development courses declared by the department, the students are expected to acquire the skill and get certified. This will be evaluated at the end of the semester by the faculty.

DESCRIPTION:

Students should acquire skill in the domain/inter disciplinary area from government/private training centers/industries /University for a minimum period of 15 calendar days. The training can be through off line, online or mixed mode. Students are supposed to prepare Technical skill report at the end of the training and submit the report along with the certificate in proof of the training, during the viva voce examination conducted by the examiners duly appointed by the head of the department

Total Hours:30

COURSE CODE: EBCC22I06	COURSE NAME: SOFT SKILL I -Employability Skills	Ty/Lb/ ETL/IE	L	T/S. Lr	P/R	С
LDCC22100	Prerequisite: Nil	IE	0	0/0	2/0	1

L: Lecture T: Tutorial S.Lr: Supervised Learning P: Project R: Research C: Credits

Ty/Lb/ETL/IE: Theory/Lab/Embedded Theory and Lab/Internal Evaluation

OBJECTIVES:

The students should be made to

- Become good listeners to get engaged in interactive communication for effective team building.
- Develop assertive and adaptive behaviour to be leaders

		_		d adaptıv											
				tion for a			-	_	nd profe	ssional e	nvironme	nte			
				e purpose	•		_		•			1105			
										J 1					
COURS	SE OU	UICON	AES (C	os) : Stud	ients wi	ii be abi	e to								
CO1	Bec	ome go	od lister	ners to ge	t engage	ed in int	eractive	commi	unication	n for effe	ective tean	n building	Ţ .		
CO2	Dev	elop ass	sertive a	ınd adapt	ive beha	viour to	be lead	ders							
CO3	Dev	elop pe	er intera	action for	a succe	ssful lif	elong le	earning.							
Mappin	g of (Course	Outcon	nes with	Progra	m Outc	omes (I	Pos)							
Cos/Pos	5	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1		3	3	3	1	2	2	1	2	3					
CO2		3	3	3	1	2	2	1	2	3					
CO3		3	3	3	1	2	2	1	2	3					
C /DC	/PSOs PSO1 PSO2 PSO3 PSO4														
Cos /PS	OS	13	01	D1 3 2 2 2											
Cos /PS					2				2			2			
					2				2			2			
CO1		3	3												
CO1 CO2 CO3			3 2 3	Correlatio	2		- Mediu	ım, 1-L	2			2			
CO1 CO2 CO3	licate		3 2 3	ies and social	2		Open Elective	Inter Disciplinary T-L	2	Skill Component		2			

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C
EBCC22I06	SOFT SKILL I-Employability Skills	ΙE	0	0/0	2/0	1

Prefatory Note

This paper aims to equip students with skills essential for work place and global environment to which they will move on from the university, once they complete the course. As such, this paper provides students with a set of ten interlinked soft skills: Listening, team work, emotional intelligence, assertiveness, learning to learn, problem solving, attending interviews, adaptability, non-verbal communication and written communication. Students will get engaged in pair work, group work, role play, discussion, presentation, storytelling, writing assignments etc.,

Unit -I

Listening, Speaking, Reading and Writing skills (LSRW)

Unit-II

Team work skills: adaptability, emotional intelligence, learning skills

Unit -III

Leadership Qualities: assertiveness, reasoning, compassion and compatibility

Unit-IV

Problem solving: willingness to learn, creative thinking, developing observation skills

Unit -V

Interview skills: employability skills, resume writing

Total Hours:30

Suggested reading

S.P. Dhanavel, English and Soft Skills, Vol. 1, Orient Blackswan Pvt. Ltd. 2010

V SEMESTER

COURSE	COLIF	RSE NA	MF•												
CODE:	COOI			ORGA	ANIZA	TION	AND		Ty/Lb/		$\mathbf{L} \mid \mathbf{T}$	S.Lr	P/I	R	C
EBCS22006					ECTUR				ETL/I	E					
	Prerec	quisite:	Microp	rocesso	r and M	Iicrocoi	ntrollers	S	Ty		3	1/0	0/0	0	4
L : Lecture T :			-			-	•			C: C 1	redits				
Ty/Lb/ETL/IE		ry/Lab/I	Embedd	led The	ory and	Lab/In	ternal E	Evalu	ation						
OBJECTIVES															
The students s	hould b	e made	to												
1	•		-	-		ompute	r includ	ling C	CPU, me	mor	y, I/O a	nd sto	rage,	,	
underst	and the	uses fo	r cache	memor	ry,										
• unders	tand a v	wide vai	riety of	memor	y techn	ologies	both in	terna	l and ext	erna	ıl,				
• unders	tand the	e role of	f the op	erating	system	in inter	facing	with t	the comp	outer	hardw	are			
COURSE OU	TCOM	ES (Co	s): Stu	dents w	ill be al	ble to									
CO1	Under	stand th	ne theor	etical b	asics of	f centra	proces	sing	unit[L2]						
CO2	Under	stand th	ne basic	operati	ions of	CPU[L:	2]								
CO3	apply	the kno	wledge	gained	and De	esigna c	entral p	roces	ssing uni	t[L3]				
CO4	apply	the con	cepts of	f memo	ry orga	nizatior	and I/O	O pro	cessing	unit[[L2]				
CO5		ze the e													
Mapping of C															
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO	8 P	09	PO10	PO	11	PO	12
CO1	3	2	2							1		1		1	1
CO2	3	3	3							1		1		1	1
CO3	3	2	2									1		1	1
CO4	3	3	3	1					1			1		1	
CO5	3	2	3	1					1	1		1		1	<u> </u>
Cos / PSOs		PSO1			PSO2			PS	SO3			PS	O4		
CO1		3			1				300				ŭ. 1		
CO2		3			2				1						
CO3		-			3				1						
CO4		2			2							1	1		
CO5		2			2							1	1		
3/2/1 Indicates	Streng	th Of C		on, $3-1$	High, 2	- Mediu	ım, 1- I	LOW	1	1			ı		
			Humanities and social Science												
		ce	cial 9		e		1								
ıry	4)	Science	os p		ctiv		nary	ent	ject						
Category	snce		s an	ore	ı ele	ive	ilqi	ıpor	/Pro						
Cat	Basic Science	Engineering	ities	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project						
	sic	inec	nan	gran	rog	in E	er I) III	actio						
Ĭ	3a	ng	[m]	roş)pe	Int	Sk	Pra						
		[1]	نلانا												
	I	田	بلز	√											

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C
EBCS22006	COMPUTER ORGANIZATION AND	Ty	3	1/0	0/0	4
	ARCHITECTURE	1 y		1/0	0/0	T

UNIT I BASIC STRUCTURE OF COMPUTERS

12 Hrs

Basic functional blocks of a computer: CPU, memory, input-output subsystems, control unit. Instruction set architecture of a CPU – registers, instruction execution cycle, RTL interpretation of instructions, addressing modes, instruction set. Case study – instruction sets of some common CPUs.

UNIT II ARITHMETIC AND LOGIC UNIT

12 Hrs

Data representation: signed number representation, fixed and floatingpoint representations, character representation. Computer arithmetic – integer addition and subtraction, ripple carry adder, carry look-ahead adder, etc. multiplication – shift-and-add, Booth multiplier, carry save multiplier, etc. Division – non-restoring and restoring techniques, floating point arithmetic.

UNIT III PROCESSOR UNIT

12 Hrs

Data path implementation-Control unit-hardwired control – micro programmed control, nano programming - Concepts of pipelining – Pipeline hazards

UNIT IV MEMORY SYSTEM

12 Hrs

Memory hierarchy-Internal organization of RAM – ROM – Interleaved Memory-Cache and associative memories -Virtual memory – Memory organization and cache coherence issues

UNIT V INPUT/OUTPUT AND PERIPHERALS

12 Hrs

Input-output subsystems, I/O transfers – program controlled, interrupt driven and DMA, privileged and non-privileged instructions, software interrupts and exceptions. Programs and processes – role of interrupts in process state transitions.

Total Hours: 60

TEXT BOOKS:

- 1. John L. Hennessey and David A. Patterson, "Computer Architecture A Quantitative Approach", Morgan Kaufmann / Elsevier Publishers, Fouth Edition, 2012.
- 2. John Hayes (2012) ,(2007) digitized Computer Architecture and Organization, Tata McGraw Hill
- 3. Carl Hamacher, ZvonkoVranesic, SafwatZaky and NaraigManjikian, "Computer Organization and Embedded Systems", Sixth Edition, Tata McGraw Hill, 2012.

REFERENCE BOOKS:

2. Morris Mano (2009) Computer System Architecture, (3rd ed.), Pearson Education

Subject	COURSE NAME:	Ty/Lb/	L	T/S.	P/R	C
Code:	COMPUTER NETWORKS	ETL/IE		Lr		
EBCS22007	Prerequisite: OPERATING SYSTEMS	Ту	3	0/0	0/0	3

L:LectureT:Tutorial S.Lr:SupervisedLearning P:Project R:ResearchC:Credits

 $T/L/ETL/IE: Theory/Lab/Embedded Theory and Lab/Internal\ Evaluation$

OBJECTIVE:

The students should be made to

• Remember how the networks functions takes place

• Under	rstandh	owcon	nmunic	ationtal	kesplace	einvario	ousmedi	iums					
					•			vorklayer	·c				
		-						•		.•			
_								atacomm	unic	ation			
COURSEO	UTCO	MES(C	COs: S	tudents	s will b	e able	to						
CO1	Stude	ents wil	l under	standar	nd reme	mber h	ow netv	vork worl	ks. [I	_2]			
CO2	Stude	entswill	have k	nowled	geon Ip	address	andana	alyze the	proto	ocols. [L1]		
CO3	Appl	y know	ledge a	bout pr	otocols	to avoi	d cong	estion. [L	3]				
CO4	Acqu	aintanc	e to ap	ply algo	orithms	in netw	vorks. []	L4]					
CO5	Will	underst	and ho	w layer	s of net	works v	work. [I	L2]					
Mappingof(Course	Outcor	meswit	h Prog	ramOu	tcomes	(Pos)						
COs/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8		PO9	PO10	PO11	PO12
CO1	3	3	2	2	2	3	1	3		3	3	3	2
CO2	3	2	1	2	2	3	3	1		3	3	3	2
CO3	3	2	1	3	3	3	2	2		3	3	3	2
CO4	3	3	2	3	1	3	1	3		2	3	3	2
CO5	3	2	2	2	1	3	3	3		3	3	3	3
COs/PSOs		PSO1			PSO2			PSC)3			PSO4	
CO1		3			3			3				3	
CO2		3			2			3				2	
CO3		3			2			3				2	
CO4		3			1			3				2	
CO5		3			3			3				2	
3/2/1Indicat	esStre	ngthOi	fCorre!	lation,3	B–High,	2-Medi	ium,1-	Low					
A.I	a	Science	and Social	Ge		ive	olinary		Project				
Category	Basic Science	Engineering So	Humanities and Science	✓ Program Core	Program	Open Elective	Inter Disciplinary	Skill Component	Practical / Proj				

COURSE CODE		Ty/Lb/ ETL/IE	L	T/S .Lr	P/R	С
EBCS22007	COMPUTER NETWORKS	Ту	3	0/0	0/0	3

UNITI INTRODUCTION

9Hrs

Introduction to computer networks and uses – Network: devices, topology, types – Reference model – The physical layer – The theoretical basis for data communication – Transmission media: Guided and unguided- Public Switched Telephone Network. Mobile telephone system.

UNITII DATALINKLAYER

9Hrs

Data link layer design issues – Error detection and correction – Sliding window protocols- example data link protocols HDLC –Channel access on links: SDMA – TDMA – FDMA – CDMA – ETHERNET – 802.11, 802.16 – Bridges and Switches-Bluetooth

UNITIII NETWORKLAYER

9Hrs

Network layer design issues – Circuit switching – Packet switching – Virtual circuit switching-Routing algorithms – Congestion control algorithms – Internetworking- Network layer in Internet –IPV4 and Basics – IPV6 Addressing – IPV6 Protocol.

UNITIV TRANSPORTLAYER

9Hrs

Transport layer design issues – Transport protocols – Simple transport protocol – Internet transport protocols UDP, TCP – Flow Control – Congestion control – Congestion avoidance

UNITY APPLICATION LAYER

9Hrs

Domainnamesystem-Electronicmail-IntroductiontoWorldWideWeb: HTTP, APPLICATION LAYER PROTOCOLS: Simple Network Management Protocol, File Transfer Protocol, Simple Mail Transfer Protocol, Telnet, RTP.

Total Hours:45

TEXTBOOKS:

- 3. PetersonDavie(2012) ComputerNetworks-AsystemApproach (2nd ed.),MorganKauffmanHarcourt Publishers.
- 4. James F. Kurose, Keith W. Ross Computer Networking: Atop-Down Approach/Edition 6, Pearson publication, 2012.

REFERENCEBOOKS:

- 1. AndrewS. Tanenbaum. DavidJ. Wetherall, "ComputerNetworks" 5thEditionPHI,2011
- 2. WilliamStallings," Dataandcomputer communications", PHI,2001
- 3. DouglasE.comer, "Internetworkingwith TCP/IP-Volume-I", PHI,5thedition2006
- 4. Godbole, "Data communicationandnetworking", TMH, 2004.
- 5. ForouzanB.A., "DataCommunicationsandnetworking", TMH, 2003.

COURSE CODE:	COURSE NAME: PRINCIPLES OF COMPILER DESIGN	Ty/Lb/ ETL/IE	L	T/ S.Lr	P/R	С
EBCS22008	Prerequisite Computer Organization and Architecture	Ту	3	0/0	0/0	3

L: Lecture T: Tutorial S.Lr: Supervised Learning P: Project R: Research C: Credits

T/L/ETL/IE: Theory/Lab/Embedded Theory and Lab/Internal Evaluation

OBJECTIVE:

The students should be made to

- To understand, design and implement a lexical analyzer.
- To understand, design and implement a parser.
- To understand, design intermediate code generation schemes.

To understan	d runtii	ne envi	ronmei	nt and n	nachine	e indepe	endent o	ptimizatio	on.			
COURSE OU	TCOM	ES (C	Os): Stu	ıdents w	ill be al	ole to						
CO1	To rea	alize ba	sics of	compile	er desig	n and a	pply fo	r real time	applic	ations. (L1)	
CO2	To Int	troduce	differe	nt trans	lation l	anguag	es (L4)					
CO3	Abilit	y to un	derstan	d the in	nportan	ce of co	ode gen	eration an	d code	optimiza	tion. (L2	2)
CO4	To kn	ow abo	ut com	piler ge	neratio	n tools	and tec	hniques (I	L2)			
CO5	Desig	n a sim	ple con	npiler u	sing the	e constr	ruction	tools. (L5))			
Mapping of Co	ourse (Outcom	es with	n Progr	am Ot	itcome	s (Pos)					
COs/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	3	2	1	1	2	2	2	2		
004	_	_	_	_	_	-	_	_	_	-	-	-

CO1	3	2	3	2	1	1	2	2	2	2		
CO2	2	2	2	1	2	1	2	2	2	1	1	1
CO3	3	2	3	2	2	2	1	1	1		1	1
CO4	3	3	3	2	3	3	1					
CO5	3	3	3	2	3	2	1					
COs / PSOs		PSO1			PSO ₂			PSO3			PSO4	
CO1		3			3			3			2	
CO2		2			3	•		2	•		2	
CO3		2			2			1			1	

CO4 1 **CO5**

3/2/1 Indicates	Stren	gth Of	Correla	tion, 3	3 – Hig	h, 2- M	[edium	, 1- I	Low		
Category	Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project		
				✓							

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C
EBCS22008	PRINCIPLES OF COMPILER DESIGN	Ту	3	0/0	0/0	3

UNIT I- Introduction: 9 Hrs

The structure of a compiler, The science of building a compiler, Programming language basics

Lexical Analysis:

The Role of the Lexical Analyzer, Input Buffering, Recognition of Tokens, The Lexical-Analyzer Generator Lex, Finite Automata, From Regular Expressions to Automata, Design of a Lexical-Analyzer Generator, Optimization of DFA-Based Pattern Matchers.

UNIT II – Syntax Analysis:

9 Hrs

Role of Parser – Grammars – Error Handling – Context-free grammars – Writing a grammar, Top-Down Parsing – General Strategies Recursive Descent Parser –FIRST and FOLLOW- -LL(1) grammars- Non Recursive Predictive Parser-Bottom Up Parsing – Shift Reduce Parser-LR Parser-LR (0) Item Construction of SLR Parsing Table - Introduction to LALR Parser – Error Handling and Recovery in Syntax Analyzer-YACC.

UNIT III – Syntax-Directed Translation:

9 Hrs

Syntax-Directed Definitions, Evaluation Orders for SDD's, Applications of Syntax-Directed Translation, Syntax-Directed Translation Schemes, Implementing L-Attributed SDD's.

Intermediate-Code Generation:

Variants of Syntax Trees, Three Address Code, Types and Declarations, Translation of Expressions, Type Checking, Control Flow, Backpatching, Switch Statements.

UNIT IV- Run-Time Environments:

9 Hrs

Storage Organization- Stack Allocation of Space, Access to Nonlocal Data on the Stack, Heap Management, Introduction to Garbage Collection, Introduction to Trace-Based Collection.

Code Generation:

Issues in the Design of a Code Generator, The Target Language, Addresses in the Target Code, Basic Blocks and Flow Graphs, Optimization of Basic Blocks, A Simple Code Generator, Peephole Optimization, Register Allocation and Assignment, Dynamic Programming Code-Generation.

UNIT V – Machine-Independent Optimization:

9 Hrs

The Principal Sources of Optimization, Introduction to Data-Flow Analysis, Foundations of Data-Flow Analysis, Constant Propagation, Partial-Redundancy Elimination, Loops in Flow Graphs.

Total Hours: 45

TEXT BOOKS: 1. Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman (2007), Compilers Principles, Techniques and Tools, 2nd edition, Pearson Education, New Delhi, India.

REFERENCE BOOKS:

- 1. Alfred V. Aho, Jeffrey D. Ullman (2001), Principles of compiler design, Indian student edition, Pearson Education, New Delhi, India.
- 2. Kenneth C. Louden (1997), Compiler Construction—Principles and Practice, 1st edition, PWS Publishing.
- 3. K. L. P Mishra, N. Chandrashekaran (2003), Theory of computer science- Automata Languages and computation, 2nd edition, Prentice Hall of India, New Delhi, India.

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C
EBOL22I01	ONLINECOURSE (NPTEL/SWAYAM /Any MOOC approved by AICTE/UGC)	IE	1	0/0	1/0	1

Students should register for the online course with a minimum course duration of 4weeks through the online portals such as NPTEL/SWAYAM/Any MOOC in the beginning of the semester. A mentor will be assigned by the department for monitoring the students.

Students are expected to attend the online classes regularly and submit the weekly assignments before the due dates. Students should appear for the online examination and submit the certificate at the end of the semester. Internal Examination will be conducted by the examiners duly appointed by the head of the department.

Total Hours:30

COURSE	COU	RSE N	AME:						m ~ -	,				
CODE:		NE	TWO	RKPR	OGRA	MMI	NGLA	B	Ty/Lb ETL/I		L T/S	.Lr	P/R	C
EBCS22L05														
		_	: OPEF						Lb		0/	0	3/0	1
L:LectureT:T											dits			
Ty/Lb/ETL/I		eory/La	.b/Emb	eaaea	neory	anaLa	b/Inter	nai E	valuati	on				
OBJECTIVE The students		ld he m	ade to											
				to desi	gn an a	pplica	tion us	ing T	CP and	l UE	P sock	ets.		
• H	andsor	ı Expe	rience	to desi	gnan ir	iterfac	e to tra	nsfer	a file b	etw	een two	end	s usii	ng FTP
							oplicati ork Sir		or speci	fic o	peratio	n		
COURSEOU								IIuIu						
CO1								gram	ming u	sing	TCP a	nd U	DP[L	.31
CO2		-			_			_	_	_				rotocol[L6]
CO3	_			-	-		_	-	MI andl	_			-	
CO4		•				-	orks[L2				··r	L		
CO5														
MappingofC	Analyze the state of network[L4] CourseOutcomeswith ProgramOutcomes (POs) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO1													
COs/POs	PO1	PO2	PO3	8 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO 2 2 3 1 3 3 3 3							PO12			
CO1	3	3	2											2
CO2	3	2	1	2	2	3	3	1		3	3		3	2
CO3	3	2	1	3	3	3	2	2		3	3		3	2
CO4	3	3	2	3	1	3	1	3		2	3		3	2
CO5	3	2	2	2	1	3	3	3		3	3		3	3
COs/PSOs		PSO1			PSO ₂			PS	SO3				PSO	4
CO1														
		3			3				3				3	
CO2		3			2			•	3				3	
CO3		3			2 3			,	3				3	
CO3 CO4		3 3 3			3 2			•	3 3 2				3 2	
CO3 CO4 CO5	005440	3 3 3	£C awa	Nation	2 3 2 2	.b 2 M	adi	,	3 3 2 3				3	
CO3 CO4	esStre	3 3 3	fCorre	elation	2 3 2 2	h,2-M	edium	,	3 3 2 3				3 2	
CO3 CO4 CO5	esStre	3 3 3		elation	2 3 2 2	h,2-M	edium	,	3 3 2 3				3 2	
CO3 CO4 CO5	esStre	3 3 3		elation	2 3 2 2	h,2-M	edium	,	3 3 2 3				3 2	
CO3 CO4 CO5	esStre	3 3 3 3 ngthO		elation	2 3 2 2	h,2-M	edium	,	3 3 2 3				3 2	
CO3 CO4 CO5 3/2/1Indicate	esStre	3 3 3 3 ngthO		elation	2 3 2 2 ,3–Hig	h,2-M		,1- L	3 2 3 ow				3 2	
CO3 CO4 CO5 3/2/1Indicate		3 3 3			2 3 2 2 ,3–Hig			,1- L	3 2 3 ow				3 2	
CO3 CO4 CO5 3/2/1Indicate		Science acceptance of the second seco			2 3 2 2 ,3–Hig			,1- L	3 2 3 ow				3 2	
CO3 CO4 CO5		Science acceptance of the second seco			2 3 2 2 ,3–Hig			,1- L	3 2 3 ow				3 2	
CO3 CO4 CO5 3/2/1Indicate		Science acceptance of the second seco			2 3 2 2			,1- L	3 2 3 ow				3 2	
CO3 CO4 CO5 3/2/1Indicate	Basic Science	3 3 3 3 ngthO	Humanities and social Science O.	A Program Core	2 3 2 2 ,3–Hig	h,2-M	Inter Disciplinary and an inter Disciplinary	,	3 3 2 3				3 2	

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/ S.Lr	P/R	C
EBCS22L05	NETWORKPROGRAMMING LAB					
		Lb	0	0/0	3/0	1

LISTOF EXPERMENTS:

- 1. Networking Commands with options. (Case Study).
- 2. Socket program to extent communication between two deferent ends using TCP.
- 3. Socket program to extent communication between two deferent ends using UDP
- 4. Create a Socket (TCP) between two computers and enable file transfer between them.
- 5. Design a TCP concurrent server to echo given set of sentences using poll functions
- 6. Implement Concurrent Time Server application using UDP to execute the program at remote server. Client sends a time request to the server; server sends its system time back to the client. Client displays the result.
- 7. Implementation of RPC in server-client model
- 8. Implementation of ARP/RARP.
- 9. HTTP Socket program to download a web page.
- 10. File transfer in Client-Server architecture using following methods a) Using RS232C b) Using TCP/IP
- 11. To implement RMI (Remote Method Invocation)
- 12. Write a network program to broadcast/ multicast a message to a group in the same network.
- 13. Demonstration of Network Simulators.

Total Hours:45

COURSE	COURSE NAME:						Tv/	/Lb/		Т	/ _				
CODE: EBCS22L06	COMPILER DESIGN LAB							L/IE	L	S.I	P	P/R	C		
	Prerequisite: Computer Organization and Architecture							Lb	0	0/		3/0	1		
L: Lecture T: Tutorial S.Lr: Supervised Learning P: Project R: Research C: Credits															
T/L/ETL/IE : Theory/Lab/Embedded Theory and Lab/Internal Evaluation															
OBJECTIVE: The students should be made to															
The students should be made to • The students will be able to construct the NFA and DFA for a regular expression and implement															
various phases of compiler.															
COURSE OUTCOMES (COs): Students will be able to															
CO1	Implement Symbol table (L5)														
CO2	Design a lexical analyzer. (L5)														
CO3	Construct the NFA and DFA for a regular expression. (L5)														
CO4	Implement the front end and back end of a compiler. (L4)														
CO5 Implement different parsing algorithms. (L4)															
Mapping of Course Outcomes with Program Outcomes (POs)															
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	3	PO9	PO		PO11	PC)12
CO1	3	2	3	2	3	2	2	1		1	1		1		1
CO2	3	2	3	3	2	2	2	1					1	-	
CO3	3	3	3	3	3	2	2	1 1			1		1	+	
CO5	3	3	3	2	1	2	1	1			1			+	
CO3	3	3			1		1							+	
COs /PSOs	PSO1 PSO2					PSO3 PSO4									
CO1	3 3					3					2				
CO2	3 3				2					1					
CO3		2	3				2				1				
CO4		3			2				3			2			
CO5		3			2										
3/2/1 Indica	ites Str	ength (Of Cori	relation	1, 3 – H	igh, 2-	Mediu	m, 1-	Low	7	l	ı			
Category	Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project						
				√					✓						

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/ S.Lr	P/R	C
EBCS22L06	COMPILER DESIGN LAB	Lb	0	0/0	3/0	1

LISTOF EXPERMENTS:

- 1. Implementation of symbol table.
- 2. Develop a lexical analyzer to recognize a few patterns in c (ex. Identifiers, constants, comments, operators etc.)
- 3. Design a lexical analyzer for the given language. The lexical analyzer should ignore redundant spaces, tabs and new lines, comments etc.
- 4. Program to recognize a valid variable which starts with a letter followed by any number of letter or digits.
- 5. Program to implement NFAs that recognize identifiers, constants, and operators of the mini language.
- 6. Program to implement DFAs that recognize identifiers, constants, and operators of the mini language.
- 7. Program to eliminate Left Factoring.
- 8. Program to Construct top-down parsing table
- 9. Program for Shift-reduce parsing algorithm
- 10. Program to Operator-Precedence parsing algorithm
- 11. Program to Construct LR-Parsing table
- 12. Program to Generate a code for a given intermediate code
- 13. Generate Machine code.

Total Hours:45

COURSE CODE EBCS22ET5	COURSE NAME: USER EXPERIENCE DESIGN	Ty/Lb/ ETL/IE	L	T/ S.Lr	P/R	С
	Prerequisite: NIL	ETL	2	0/0	2/0	3

L: Lecture T: Tutorial S.Lr: Supervised Learning P: Project R: Research C: Credits

Ty/Lb/ETL/IE: Theory/Lab/Embedded Theory and Lab/Internal Evaluation

OBJECTIVES:

The students should be made to

- Gain knowledge on the desirable features of good user interfaces and the design process

ble inter	action de	evices.									
	-										
Unders	stand the	many c	onsidera	tions in	volved in	n interfa	ce and so	creen desig	gn (L1)		
Learn	the ratio	nale and	apply th	ne rules f	for an ef	fective o	design m	ethodolog	y (L3)		
			reens an	d Web p	ages tha	it encou	rage effi	cient, accu	rate comp	orehensio	n and
contro	ls (L2)										nd
•				_		ding inte	erface de	velopmen	t and testi	ng (L5)	
						DC=	DCC.	P 00	DC10	DC44	DC46
						 	PO8				PO12
						-	1	1	1	1	
		-							1	1	1
							+	1			1
							1				
3	3	3				_					
	PSO1			PSO2			PSO	3		PSO4	
	3			3			3			2	
	3			2			3			2	
	3			2			2			2	
	3			3			3			2	
	3			2			2			2	
s Streng	th Of Co	rrelation	, 3 – Hig	sh, 2- Me	dium, 1-	Low				1	
Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project			
	Understy to ide UTCON Understy to ide UTCON Learn Service Of Posigre execut Identification of Performance Of Posigre Of	UTCOMES (CO Understand the Learn the ratio Design and orgexecution (L5) Identify the cocontrols (L2) Perform the us Course Outcomes PO1 PO2 3 5 Strength Of Co	UTCOMES (COs): Studentify the International UTCOMES (COs): Studentify the International UTCOMES (COs): Studentify the rational and Design and organize sceneration (L5) Identify the component controls (L2) Perform the user interfactors Outcomes with Proceedings 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	UTCOMES (COs): Students wi Understand the many consideral Learn the rationale and apply the Design and organize screens an execution (L5) Identify the components of grant controls (L2) Perform the user interface designates and apply the components of grant controls (L2) Perform the user interface designates and apply the components of grant controls (L2) Perform the user interface designates and apply the components of grant controls (L2) Perform the user interface designates and apply the components of grant controls (L2) Perform the user interface designates and apply the controls (L2) Perform the user interface designates and apply the controls (L2) Perform the user interface designates and apply the controls (L2) Perform the user interface designates and apply the controls (L2) Perform the user interface designates and apply the controls (L2) Polymerates and apply the controls (L2) Perform the user interface designates and apply the controls (L2) Perform the user interface designates and apply the controls (L2) Perform the user interface designates and apply the controls (L2) Polymerates and apply the components of grant controls (L2) Perform the user interface designates and apply the components of grant controls (L2) Polymerates and apply the components of grant controls (L2) Provided the compon	Design and organize screens and Web pexecution (L5) Identify the components of graphical and controls (L2) Perform the user interface design procestourse Outcomes with Program Outcomes PO1 PO2 PO3 PO4 PO5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Die interaction devices. ty to identify the Internationalization aspects of UTCOMES (COs): Students will be able to UTCOMES (COs): Students will be able to Understand the many considerations involved in Learn the rationale and apply the rules for an eff Design and organize screens and Web pages that execution (L5) Identify the components of graphical and Web is controls (L2) Perform the user interface design process, inclusiourse Outcomes with Program Outcomes (POs) PO1 PO2 PO3 PO4 PO5 PO6 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	ble interaction devices. ty to identify the Internationalization aspects of User Inter UTCOMES (COs): Students will be able to Understand the many considerations involved in interface and apply the rules for an effective of Design and organize screens and Web pages that encoure execution (L5) Identify the components of graphical and Web interface controls (L2) Perform the user interface design process, including into course Outcomes with Program Outcomes (POs) PO1 PO2 PO3 PO4 PO5 PO6 PO7 3 3 3 3 3 3 3 2 2 2 2 1 3 3 3 2 2 2 2 1 1 3 3 3 3	The interaction devices. ty to identify the Internationalization aspects of User Interface Description in the Internationalization aspects of User Interface Description (LOS): Students will be able to Understand the many considerations involved in interface and so Learn the rationale and apply the rules for an effective design measurement of graphical and Web pages that encourage efficience of the execution (LS). Identify the components of graphical and Web interfaces and so controls (L2) Perform the user interface design process, including interface descriptions of the user interface design process, including interface descriptions of the user interface design process, including interface descriptions of the user interface design process, including interface descriptions of the user interface design process, including interface descriptions of the user interface design process, including interface descriptions of the user interface design process, including interface descriptions of the user interface design process, including interface descriptions of the user interface design process, including interface descriptions of the user interface design process, including interface descriptions of the user interface design process, including interface descriptions of the user interface design process, including interface descriptions of the user interface design process, including interface descriptions of the user interface design process, including interface descriptions of the user interface design process, including interface descriptions of the user interface design process, including interface descriptions of the user interface design process, including interface descriptions of the user interface design process, including interface descriptions of the user interface design process, including interface design process, including interface descriptions of the user interface design process, including interface descriptions of the user interface design process, including interface descriptions of the user interf	The interaction devices. ty to identify the Internationalization aspects of User Interface Design and a surce of Uto identify the Internationalization aspects of User Interface Design and a surce of Uto identify the Internationalization aspects of User Interface Design and a surce of Uto identify the rules for an effective design methodolog. Design and organize screens and Web pages that encourage efficient, accurate execution (L5) Identify the components of graphical and Web interfaces and screens — we controls (L2) Perform the user interface design process, including interface development ourse Outcomes with Program Outcomes (POs) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 3 3 3 3 3 2 2 1 1 3 3 3 2 2 2 2 1 1 3 3 3 2 2 2 2 1 1 3 3 3 3 2 2 2 2 1 1 3 3 3 3 2 2 2 2 2 1 1 PSO1 PSO2 PSO3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	The interaction devices. The total internationalization aspects of User Interface Design and apply then by the Internationalization aspects of User Interface Design and apply then UTCOMES (COs): Students will be able to Understand the many considerations involved in interface and screen design (L1) Learn the rationale and apply the rules for an effective design methodology (L3) Design and organize screens and Web pages that encourage efficient, accurate compexecution (L5) Identify the components of graphical and Web interfaces and screens — windows, recontrols (L2) Perform the user interface design process, including interface development and testions Outcomes with Program Outcomes (POs) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 3 3 3 3 3 2 1 1 3 3 3 3 2 1 1 3 3 3 3 3 2 2 1 1 3 3 3 3 3 2 2 1 1 3 3 3 3 2 2 2 1 1 3 3 3 3 2 2 2 2 2 1 1 Strength Of Correlation, 3 – High, 2- Medium, 1- Low	ty to identify the Internationalization aspects of User Interface Design and apply them in pract UTCOMES (COs): Students will be able to Understand the many considerations involved in interface and screen design (L1) Learn the rationale and apply the rules for an effective design methodology (L3) Design and organize screens and Web pages that encourage efficient, accurate comprehensio execution (L5) Identify the components of graphical and Web interfaces and screens — windows, menus, are controls (L2) Perform the user interface design process, including interface development and testing (L5) Ourse Outcomes with Program Outcomes (POs) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 3 3 3 3 3 3 3 3 3 2 1 1 1 1 3 3 3 3 3 2 2 1 1 1 1 3 3 3 3 3 2 2 1 1 1 3 3 3 3 2 2 2 2 2 2 1 1 1 3 3 3 3 2 2 2 2 2 2 2 2 2 1 1 1 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	С
EBCS22ET5	USER EXPERIENCE DESIGN	ETL	2	0/0	2/0	3

UNIT-I INTRODUCTION TO USER INTERFACES

12 Hrs

Importance of User Interface: Definition-Importance of good design-Benefits of good design Characteristics of Graphical and Web Interfaces: Interaction styles-The Graphical User Interfaces Popularity of graphics - The concept of direct manipulation - Advantages/Disadvantages of Graphical systems-Characteristics of GUI- The Web User Interface-Popularity and characteristics of Web Interface- Principles of User Interface Design.

UNIT-II USER INTERFACE DESIGN PROCESS

12 Hrs

Designing for people-Seven Commandments-Common usability problems-measures of usability. Know your user (or) Client: Important Human Characteristics in design- Human Considerations in the design - Human Interaction Speeds-Performance versus preference. Understand the business function: Business definition and requirements analysis-determining basic business functions-Design Standards (or) Style Guides-Training and documentation needs.

UNIT-III INTERFACE AND SCREEN DESIGN

12 Hrs

Interface Design Goals - Screen & Web page Meaning and purpose- Organizing Elements – consistency Starting point-Ordering Data and Content - Navigation and Flow - Visually Pleasing Composition - Distinctiveness- Focus and Emphasis - Technological considerations in Interface Design.

UNIT IV DEVELOP SYSTEM MENUS AND NAVIGATION SCHEMES

12 Hrs

Structure of Menus: Single-Sequential Linear- Simultaneous-Hierarchical-Connected-Event Trapping Menus. Functions of Menus: Navigation-Execution-displaying information-parameter input. Contents of Menus: Menu context-Menu Title-Choice Descriptions-Completion

Instructions. Formatting of Menus: Consistency-Display-Presentation-Organization-Complexity-Item arrangement- Ordering-Grouping- Selection support Menus. Phrasing the menus: Menu Titles -Menu Choice description-Menu Instruction-Intent Indicators-Keyboard short cuts. Web site Navigation Kinds of Graphical menus.

UNIT V WINDOWS AND INTERACTION DEVICES

12 Hrs

Window Characteristics- Components of a Window-Window Presentation Styles-Types of Windows Organizing Window functions-The Web and the Browser. Input Devices-Characteristics-Selection of proper input device. Output Devices-Screens-Speakers International Considerations:-Localization-Cultural considerations-Words and Texts-Images and symbols- Colors, Sequence and functionality-Requirements determination and testing. Accessibility: Types of Disabilities-Accessibility Design.

Total Hours: 60

TEXT BOOKS:

1. The Essential Guide to User Interface Design: An Introduction To GUI Design Principles and Techniques 3rd Edition, **By** Wilbert O. Galitz

2. User Interface Design and Evaluation **1st Edition - March 22, 2005** Debbie Stone, Caroline Jarrett, Mark Woodroffe, ShaileyMinocha

REFERENCE BOOKS:

- 1. Wilbert O Galitz, "The Essential Guide to User Interface Design", Wiley India Pvt., Ltd., Third Edition,
- 2. Ben Shneidermann, "Designing the User Interface", Pearson Education Asia, Fifth Edition, 2013
- 3. Alan Dix, Janet Finlay, G D Abowd and Russel Beale, "Human Computer Interaction", Pearson Education

COURSE CODE: EBCS22I02	COURSE NAME: TECHNICAL SKILL II	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	С
	Prerequisite: Nil	IE	0	0/0	2/0	1

L: Lecture T: Tutorial S.Lr: Supervised Learning P: Project R: Research C: Credits

Ty/Lb/ETL/IE: Theory/Lab/Embedded Theory and Lab/Internal Evaluation

OBJECTIVES:

The students should be made to

- To make the students expert in domain specific knowledge.
- To develop professionals with idealistic, practical and moral values.
- To facilitate the students with emerging technology

COURSE OUTCOMES	(COs):	Students	will be able to
-----------------	--------	----------	-----------------

CO1	Understand the domain specific knowledge.
CO2	Able to apply idealistic, practical and moral values.
CO3	Familiarize with emerging technology

Mapping of Course Outcomes with Program Outcomes (POs)

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	1	1	2	2	1	1	1	3	1
CO2	3	3	2	3	3	2	2	2	2	2	3	1
CO3	3	3	3	3	3	2	2	1	2	2	3	1
COs /PSOs	PS	O1		PSC)2	•		PSO3			PSO4	
CO1		3		3				1			1	
CO2		3		3			1 3			3		
CO3		3		3				1				

3/2/1indicates Strength of Correlation 3- High, 2- Medium, 1-Low

Category	Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project
								/	'

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C
EBCS22I02	TECHNICAL SKILL II	IE	0	0/0	2/0	1

OBJECTIVES:

- To make the students expert in domain specific knowledge.
- To develop professionals with idealistic, practical and moral values.
- To facilitate the students with emerging technology.

From the list of skill development courses declared by the department, the students are expected to acquire the skill and get certified. This will be evaluated at the end of the semester by the faculty.

DESCRIPTION:

Students should acquire skill in the domain/inter disciplinary area from government/private training centers/industries /University for a minimum period of 15 calendar days. The training can be through off line, online or mixed mode. Students are supposed to prepare Technical skill report at the end of the training and submit the report along with the certificate in proof of the training, during the viva voce examination conducted by the examiners duly appointed by the head of the department.

VI SEMESTER

COURSE CODE EBCS22009	COURSE NAME: OBJECT ORIENTED SOFTWARE ENGINEERING	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C
	Prerequisite: OBJECT ORIENTED PROGRAMMING WITH C++	Ту	3	0/0	0/0	3

L: Lecture T: Tutorial S.Lr: Supervised Learning P: Project R: Research C: Credits

Ty/Lb/ETL/IE: Theory/Lab/Embedded Theory and Lab/Internal Evaluation

OBJECTIVES:

The students should be made to

- Understand different software life cycle concepts
- Study and design SRS Documents for software projects.

	ML Diag		-	·			•	m					
	stand vari						ires						
COURSE OU													
CO1	Underst	Understand the key activities in managing Software Development[L2]											
CO2	Apply (pply Object-Oriented Design Principles to develop software [L3]											
CO3	Apply o	lifferen	t Mode	ling Te	echniqu	es to m	odel so	oftware	projects[]	L3]			
CO4	Apply S	Systema	atic Pro	cedure	for So	ftware	Design	and De	ployment	:[L3]			
CO5	Analyze	e variou	ıs testir	ng and i	mainte	nance to	echniqu	ies[L4]					
Mapping of C	Course O	utcom	es with		am Ou	tcomes	s (POs))					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	3	1	2	3	1	2	3	2	1	3	
CO2	2	3	2	1	3	3	1	3	2	2	1	3	
CO3	3	2	2	1	3	2	1	3	2	3	1	2	
CO4	3	3	2	1	3	2		3	2	2	1	3	
CO5	3	2	2	1	2	2		3	3	2	1	3	
COs / PSOs]	PSO1			PSO2			PSO	3		PSO4		
CO1		3			2			3			2		
CO2		3			3			3			3		
CO3		2			3			2			2		
CO4		2			2			3			3		
CO5		2			1			3			3		
3/2/1 Indicate	s Streng	th Of (Correla	tion, 3	– Higl	h, 2- M	ledium	, 1- Lov	v				
Category	Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project				
				✓									

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	С
EBCS22009	OBJECT ORIENTED SOFTWARE	Ty	3	0/0	0/0	3
EDC522007	ENGINEERING	1 y		0/0	0/0	3

UNIT ISOFTWARE DEVELOPMENT LIFE CYCLE AND MODELS

9 Hrs

Introduction – Software Development Life Cycle: Requirement Analysis – Designing – Coding – Testing – Deployment – Maintenance – Software Process Models: Waterfall Model – Incremental Development – Reuse-oriented Software Engineering – OOSD Life Cycle: Object-Oriented Analysis – Object-Oriented Design – Object-Oriented Implementation – Software Process Activities: Software Specification – Software design and implementation – Software Validation – Software Evolution – Object Modeling Techniques – Rumbaugh Methodology – Booch Methodology – Jacobson Methodology – Agile Methodology – Boehm's Spiral Model.

UNIT II OBJECT ORIENTED SOFTWARE REQUIREMENT ANALYSIS

Introduction – Software Requirements Specification (SRS) Document – System Functions: Functional and Non-Functional Requirements – **Unified Modeling Language (UML):** Introduction – Classification of UML Diagrams: **Structural UML:** Class Diagram – Object Diagram – Component Diagram – **Behavior UML:** State Diagram – Activity Diagram – Use Case Diagram – Sequence Diagram – **System Modeling:** Context Models – Interaction Models – Structural Models – Behavioral Models.

UNIT III OBJECT ORIENTED SOFTWARE DESIGN

9 Hrs

9 Hrs

System Design: System Architectural Design Decisions – Architectural Views – Architectural Patterns -- **Object-Oriented Design:** OO Concepts – OO Design Axioms and Corollaries – Design Patterns – Designing Classes – Designing protocols and class visibility – OO Design using UML – Designing Methods – **Access Layer:** OODBMS – Table Class Mapping – Designing Access Layer Classes – **View Layer:** Designing Interface Objects.

UNIT IV SOFTWARE TESTING

9 Hrs

Introduction –Testing Strategies – Test Cases – Test Plan – **Types of Testing:** Unit Testing – Integration Testing – Development Testing – Object Oriented Testing – User Acceptance Testing – Quality Assurance Testing – Myer's Debugging Principles.

UNIT V SOFTWARE QUALITY MANAGEMENT

9 Hrs

Software Quality — **Software Quality Management:** Quality Assurance — Quality Planning — Quality Control — Benefits Of Software Quality — Best Practices of Software Quality — **Project Management:** Risk Management — Configuration Management — Change Management — Version Management — Release Management.

Total Hours: 45

TEXT BOOK:

1. Yogesh Singh, Ruchika Malhotra (2012), Object-Oriented Software Engineering, PHI Learning Private Limited.

REFERENCES:

- 1. Ian Sommerville (2008) Software Engineering (9th ed.) Pearson Education Asia
- 2. Ali Bahrami (2008) Object Oriented System Development McGraw Hill international
- **3.** Roger S. Pressman (2010) Software Engineering: A Practitioner Approach (8th ed.) McGraw hill Publications
- 4. Grady Booch (2009) Object oriented Analysis &design, Pearson Education India

COURSE CODE:	COUR WEB D			ING PH	P/MYS	SQL		•	Lb/ CL/IE	L	T/S.Lr	P/R	C
EBCS22010	Prereq	uisite: J	AVA PI	ROGRA	MMING	ŕ			Ту	3	0/0	0/0	3
L : Lecture T			_			_	3			h C: Cı	redits	<u> </u>	
Ty/Lb/ETL/IE		ry/Lab/	<u>Embed</u>	lded Th	eory a	nd Lab/	<u>Interna</u>	l Eva	luation				
OBJECTIVE													
The students s													
	nber ab						-						
	stand th		-				•	_					
 Design 	the bas	sic and	advanc	ed app	lication	ıs using	g PHP a	nd M	ySQL.				
• Study	about th	e conc	ept of V	Web ser	vices.								
COURSE OU	JTCOM	COMES (COs): Students will be able to											
CO1	Remen	member the fundamentals of HTML, CSS and PHP[L1]											
CO2	Learn	the data	abase co	oncepts	and M	IySQL[[L1]						
CO3				ls that	will	enable	to de	esign	and b	uild h	igh level	web 6	enable
G0.4		blications[L2]											
CO4		pply the concept of the server side programming to develop the application on web pages[L3] cquaint the latest programming language for the concepts of web services [L4]											
CO5									cepts of	web se	ervices [L	4]	
Mapping of (1	1	1	
COs/POs	PO1	PO2	PO3	PO4		PO6]	PO8	PO9	PO10	PO11	PO1
CO1	3	3	3	1	2	2	3		2	3	3	3	3
CO2	3	3	3	3	3	3	2		3	3	3	2	3
CO3	3	3	3	1	3	2	1		3	3	3	3	3
CO4 CO5	3	3	3	3	3	2	3 2		1	3	2	3	3
COs / PSOs	_	PSO1	3	3	PSO ₂			P	$\frac{1}{\text{SO3}}$	3		PSO4	
CO1		3			2				3			3	
CO2		3			2				3			3	
CO3		3			2							3	
CO4		3			2				3			3	
CO5		3			2				3			3	
3/2/1 indicate	s streng	gth of c	<u>correla</u>	tion 3	- Hig	h, 2 - N	Mediun	ı, 1-	- Low	1		ı	
			_										
		ıce	cial		'e		>						
>		Science	d so		ctiv		nary	ent	ject				
Category	Basic Science		ano	ore	Program elective	ive	Inter Disciplinary	Skill Component	Practical /Project				
ate	Scie	 Xring	ties) C	ram	lect)isc	,om	al/				
C	sic (nee	nani	ran	rogı	n El	er L	11 C	ıctic				
	Ba	Engineering	Humanities and social	Program Core	Д.	Open Elective	Int	Ski	Pra				
			<u> </u>	✓									
			l	· •	l	1	1		1	1		ı	

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	С
EBCS22010	WEB DESIGNING USING PHP / MYSQL	Ту	3	0/0	0/0	3

UNIT I INTRODUCTION TO HTML AND PHP

9 Hrs

Introduction to Web server and Web browser - HTML - forms - frames - tables - web page design - Dynamic HTML - introduction - cascading style sheets - object model and collections - event model - filters and transition - data binding - data control - Introduction to PHP-- Lexical structure - Variable function, - Manipulating and searching strings-Arrays

UNIT II XML 9 Hrs

Role of XML - XML and the Web - XML Language Basics - Revolutions of XML - Service Oriented Architecture (SOA). XML - Name Spaces - Structuring with Schemas and DTD - Presentation Techniques - Transformation - XML Infrastructure- Overview of SOAP- Introduction to SGML - COM – DCOM – CORBA

UNIT III SERVER SIDE PROGRAMMING

9 Hrs

Introduction to Servlets and Java Server Page (JSP), Servlets lifecycle, Servlet Classes and Sessions. JSP Application Design, JSP objects, sharing data between JSP pages, Sharing Session and Application Data, Database Programming using JDBC, development of java beans in JSP.

UNIT IV DATABASES AND GRAPHICS USING PHP

9 Hrs

Using PHP to access Database – Relational Databases and SQL – MySQLi Object interface – SQLite- Direct file level manipulation – mongoDB.Embedding an image in a page – Basic Graphic concepts – Creating and drawing images.

UNIT V WEB SERVICES

9 Hrs

Overview - Architecture - Technologies - UDDI - WSDL - ebXML -. File Handling in PHP-file uploads – file access

Total Hours: 45

TEXT BOOKS:

- 1. Richard Clark, Oli Studholme, Christopher Murphy and DivyaManian," Beginning HTML5 and CSS 3" @ Apress, 2012.
- 2. Frank. P. Coyle, "XML, Web Services and The Data Revolution", Pearson Education, 2002.
- 3. Kevin Tatroe, Peter MacIntyre, etal"Programming PHP" O REILLY 3rd Edition 2013
- 4. Luke Welling, Laura Thomson "PHP and MySQL Web Development" Person Education 5th Edition 2016.

REFERENCE BOOKS:

- 1. Robin Nixon "Learning PHP, MySQL & JavaScript" O REILLY 5th Edition 2015.
- 2. Laura Lemay, Rafe Coburn, Jennifer Kyrnin, "Mastering HTML, CSS & JavaScript Web Publishing", Pearson Education.2015 Sandeep Chatterjee, James Webber, "Developing Enterprise Web Services", Pearson Education, 2004.

COURSE CODE EBCS22011	COURSE NAME: ARTIFICIAL INTELLIGENCE	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	С
	Prerequisite: Nil	Ту	3	0/0	0/0	3

 $L: Lecture \ T: Tutorial \quad S.Lr: Supervised \ Learning \ P: Project \ R: Research \ C: Credits \ Ty/Lb/ETL/IE: Theory/Lab/Embedded \ Theory \ and \ Lab/Internal \ Evaluation$

OBJECTIVES:

The students should be made to

- To gain a historical perspective of AI and its foundations.
- To become familiar with basic principles of AI toward problem solving, inference, perception, knowledge representation, and learning.
- The students will be able to solve problems using AI techniques.
- To develop new games using AI techniques.
- To guide the process of deducing information in a computational manner.

• 10 gui	ue me p	nocess (or deduc	ing nii	omiano	II III a Co	Jiiputai	Homai III	aiiiici.				
COURSE OU													
CO1	Illustrate different types of AI agents and searching strategies.												
CO2	Discov	Discover to inference the knowledge and plan effectively.											
CO3	Discus	Discuss the techniques used for game playing using various search algorithms.											
CO4	Analyz	Analyze various types of planning to create effective AI applications.											
CO5	Classif	Classify various learning techniques.											
Mapping of C	Course (Outcon	nes with	Progr	am Out	tcomes	(POs)						
COs/POs	Mapping of Course Outcomes with Program Outcomes (POs) COs/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12												
CO1	2	3	1	1	1	1	1	1	1	1	1	3	
CO2	3	3	1	1	3	3	2	1	3	2	1	3	
CO3	2	3	2	2	3	3	1	1	3	3	1	3	
CO4	3	3	3	3	3	2	2	2	3	3	2	3	
CO5	1												
COs / PSOs		PSO1			PSO2			PSC)3		PSO4		
CO1		3			2			1			1		
CO2		3			3			3			2		
CO3		3			2			2			3		
CO4		2			3			3			3		
CO5		3			2			3			3		
3/2/1 Indicate	s Stren	gth Of	Correla	ation, 3	– High	, 2- Me	dium, 1	l- Low					
Category	Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project				

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	С
EBCS22011	ARTIFICIAL INTELLIGENCE	Ту	3	0/0	0/0	3

UNIT I Introduction and Agents

9 Hrs

Introduction—History of AI-Intelligent agent –Structure of Agents– Problem solving agents - Uninformed search strategies-Searching with partial information.

UNIT II Informed Search Methods and Game Playing

9 Hrs

Informed search Strategies – A* Heuristic function – Hill Climbing search – Constraint Satisfaction problem - Optimal decisions in games – Pruning – Alpha-Beta pruning.

UNIT III Knowledge and Logic

9 Hrs

Knowledge based agent – The Wumpus world environment –Propositional Logic- First-order logic –Syntax and Semantics of FOL-Knowledge engineering process –Inference in FOL – Forward and backward chaining algorithm.

UNIT IV Planning 9 Hrs

Planning Problem-Language of planning problems-Planning with state space search-Partial order planning-Planning graphs-Planning with propositional logic-Analysis of planning approaches.

UNIT V Forms of Learning

9 Hrs

Inductive learning-Learning Decision trees-Ensemble Learning-Logical formulation of learning-Explanation based learning-Learning using relevance information.

Total Hours: 45

TEXT BOOKS:

- 1. Stuart R. Peter N. (2010) Artificial Intelligence A modern Approach, Prentice Hall
- 2. Elaine R. Kevin K. (2008) Artificial Intelligence Tata McGraw Hill

REFERENCE BOOKS:

- 1. Tim Jones M. (2008) Artificial Intelligence, A System Approach(Computer Science)
- 2. Ben Coppin (2004) Artificial intelligence illuminated, Jones and Bartlett Learning

COURSE CODE EBCS22L07	COURSE NAME: OBJECT ORIENTED SOFTWARE ENGINEERING LAB	Ty/Lb/ ETL/IE	L	T/S.L r	P/R	С
	Prerequisite: OBJECT ORIENTED PROGRAMMING WITH C++	Lb	0	0/0	3/0	1

L : Lecture T : Tutorial S.Lr : Supervised Learning P : Project R : Research C: Credits

Ty/Lb/ETL/IE: Theory/Lab/Embedded Theory and Lab/Internal Evaluation

OBJECTIVES:

The students should be made to

- Design and implement complex software solutions using software engineering techniques
- Understand working knowledge of Unified Modeling Language (UML) Sources Control
- Identify Use Cases and develop Use Case Model

	lentify Conceptual Classes and develop a domain model with UML Class Diagram												
	• .	interacti			-					_		rams.	
	COURSE OUTCOMES (COs): Students will be able to												
CO1	Analyz	Analyze and design solutions for complex projects[L4] Apply the appropriate notation to construct various UML Models[L3]											
CO2	Apply t	the appro	priate no	otation	to cons	struct v	arious I	JML N	Iodels[I	L3]			
CO3		Understand the importance of Systems Analysis and Design in solving complex problems[L2]											
CO4	Evaluat	Evaluate the difference between Object-Oriented Approach and Traditional Approach [L5]											
CO5		Apply the role and function of each UML Model in developing object-oriented software[L3]											
Mapping of C	Course O	utcomes	with P	rogran	n Outco	omes (l	POs)						
COs/POs	PO1	Tree Outcomes with Program Outcomes (POs)											
CO1	3												
CO2	2	3	1	2	3	3	2	1	2	2	1	3	
CO3	3	2	2	1	2	2	2	2	2	3	1	2	
CO4	3	3	1	2	3	2	1	3	3	2	1	3	
CO5	1	2	2	2	1	2	2	1	2	3	2	3	
COs / PSOs		PSO1			PSO2			PSO	3		PSO4		
CO1		3			2			3			2		
CO2		3			3			3			3		
CO3		2			3			2			2		
CO4		1			2			1			3		
CO5	G ₄	2	1 4	2	1	2 3 6 1	. 1	3			2		
3/2/1 Indicate	es Streng	gth Of Co		on, 3 –	Hign, A	2- Mea	lium, 1	- Low			1	1	
Category	Basic Science Engineering Science Core Program Core Program elective Inter Disciplinary Skill Component Practical /Project												

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C
EBCS22L07	OBJECT ORIENTED SOFTWARE ENGINEERINGLAB	Lb	0	0/0	3/0	1

LIST OF EXPERIMENTS

- 1. Study of Case tools such as Rational Rose or Equivalent Tools
- 2. Student Result Management System
- 3. Inventory Control System
- 4. Railway Reservation System
- 5. Hotel Management System
- 6. Automating Banking Process
- 7. Library Management System
- 8. Passport Automation System
- 9. E-Ticketing

SOFTWARE REQUIRED:

Languages: C/C++/JDK 1.3, JSDK, WEB BROWSER & UML

Any Front End Tools (Like VB, VC++, Developer 2000)

Any Back End Tools (Like Oracle, MS-Access, SQL, DB2)

Modelling and Design: Rational Rose

COURSE CODE: EBCS22L08	WEB DESIGN USING PHP& MYSQL LAB	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C
	Prerequisite: C PROGRAMMING AND MS OFFICE TOOLS	Lb	0	0/0	3/0	1
I · Lecture T ·	Tutorial S I r · Supervised Learning P · I	Project R · Resear	rch C· C	redite		

L: Lecture T: Tutorial S.Lr: Supervised Learning P: Project R: Research C: Credits

Ty/Lb/ETL/IE: Theory/Lab/Embedded Theory and Lab/Internal Evaluation

OBJECTIVE:

The students should be made to

- Develop an own web site.
- Understand the knowledge to design webpage using CSS.
- Gain knowledge to design a dynamic web site
- Develop a form based communication with Databases.

COURSE	OUTCOMES (COs): Students will be	e able to
COUNDE	(C) C) I C/C) WIII/O (C/C) O GUUGIUS WIII D	z aine io

CO1	Design a webpage using various html tags[L6]	
CO2	Remember the functions in PHP[L1]	
CO3	Understanding the concept of CSS to develop interactive web pages[L2]	
CO4	Able to learn and develop to design form handling[L6]	
CO5	Create applications using different types of web services and frameworks[L6]	

Mapping of Course Outcomes with Program Outcomes (POs)

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	2	3	3	2	3	2	3	3
CO2	3	3	3	2	3	3	2	2	3	3	2	2
CO3	3	3	3	3	3	3	3	3	3	3	3	3
CO4	2	3	3	2	2	3	3	3	3	3	3	2
CO5	3	3	3	3	3	3	3	3	3	3	3	3
COs / PSOs		PSO1			PSO2	,		PSO3			PSO4	

COs / PSOs	PSO1	PSO2	PSO3	PSO4
CO1	3	3	3	2
CO2	3	3	2	2
CO3	2	3	3	3
CO4	2	1	2	3
CO5	3	3	3	3

3/2/1 Indicates Strength Of Correlation, 3 – High, 2- Medium, 1- Low

Category	Basic Science	Engineering Science	Humanities and social Scienc	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project		
				✓					V		

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C
EBCS22L08	WEB DESIGNUSING PHP &MYSQL LAB	Lb	0	0/0	3/0	1

LISTOF EXPERMENTS:

- 1. Create a web page which includes the following using HTML
 - a) Import an Image,
 - b) Include Check box, Radio Button,
 - c) Use href tag
- 2. Create a web page which includes the following using HTML
 - a) Create a table,
 - b) Include the types of List
 - c) Use hover tag
- 3. Generate the Fibonacci series using PHP user-defined function.
- 4. Apply any two PHP sort functions each on an indexed array and an associative array.
- 5. Create a web page with the following using HTML
 - i) To embed an image map in a web page
 - ii) To fix the hot spots
 - iii) Show all the related information when the hot spots are clicked.
- 6. Create a web page with all types of Cascading style sheets.
- 7. Client Side Scripts for Validating Web Form Controls using DHTML
- 8. Form Handling in PHP- Create a recruitment website where a job seeker can upload his/her details (ex naukri)
- 9.Create an Employee database with two fields Employer's Name, Employee's Name with MySql and insert two records into those fields using PHP code.
- 10.Develop a webpage using scripting languages with the help of CSS

COURSE CODE: EBCS22I07	COURSE NAME: SOFT SKILL – II (QUALITATIVE AND QUANTITATIVE SKILLS)	Ty/Lb/ ETL/I E	L	T/S.Lr	P/R	C
	Prerequisite: Nil	IE	0	0/0	2/0	1

L: Lecture T: Tutorial S.Lr: Supervised Learning P: Project R: Research C: Credits

 $T/L/ETL/IE: Theory/Lab/Embedded\ Theory\ and\ Lab/Internal\ Evaluation$

OBJECTIVE:

The students should be made to

- To bring behavioural patterns of students.
- To train them for corporate culture.

To cre	ate self-av		cultule.													
	ld confide	nce. ents for faci	na tha i	ntomion	ve and	davala	n intor	maraana1	ralation	ahin						
COURSE OU							p inter	personar	<u>retation</u>	вшр.						
CO1	Recogniz	ze and apply	arithm	etic kno	wledge	in a v	ariety	of contex	xts.							
CO2	Ability to	o identify a	nd critic	ally eva	luate pl	hilosop	hical	argumen	ts and d	efend the	m from c	riticism.				
CO3	Define d	Define data and interpret information from graphs.														
Mapping of C	ourse Outcomes with Program Outcomes (POs)															
COs/POs	PO1	5														
CO1	3	3	3	3	3	3	1	1	3	2	3	3				
CO2	2	2	2	3	1	3	1	3	3	3	3	1				
CO3	3	3	3	3	3	3	2	2	3	3 3 3						
COs / PSOs	I	PSO1	P	SO2		P	SO3			P	SO4					
CO1		1		1			2				1					
CO2		1		2			1				1					
CO3		1		1			2				1					
3/2/1 Indicate	s Strength	of Correl	ation, 3	8 – High	, 2- Me	edium	, 1- Lo)W								
Category	Basic Science	Engineering Science	Humanities and social Science		Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project						
									✓							

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	С
EBCS22I07	SOFT SKILLS II (QUALITATIVE AND QUANTITATIVE SKILLS)	IE	0	0/0	2/0	1

(Common to all E&T courses)

UNIT I Logical Reasoning I

Logical Statements – Arguments – Assumptions – Courses of Action.

UNIT II Logical Reasoning II

Logical conclusions – Deriving conclusions from passages – Theme detection.

UNIT III Arithmetical Reasoning I

Number system – H.C.F & L.C.M – Problem on ages – Percentage – Profit & Loss – Ratio & Proportion – Partnership.

UNIT IV Arithmetical Reasoning II

Time & Work – Time & Distance – Clocks – Permutations & Combinations – Heights & Distances – Odd man out and Series.

UNIT V Data Interpretation

Tabulation – Bar graphs – Pie graphs – Line graphs.

Total Hours:30

Reference Book:

- 1. R.S.Agarwal, A modern approach to Logical Reasoning, S.Chand& Co., (2017).
- 2. R.S.Agarwal, A modern approach to Verbal and Non verbal Reasoning, S.Chand& Co., (2017).
- 3. R.S.Agarwal, Quantitative Aptitude for Competitive Examinations, S.Chand& Co., (2017).
- 4. A.K.Gupta, Logical and Analytical Reasoning, Ramesh Publishing House, (2014).
- 5. B.S.Sijwali, Indusijwali, A new approach to Reasoning (Verbal and Non verbal), Arihant Publishers, (2014).

COURS CODE: EBCS		CC	OURSE N		NICAL	SKILL	III		Ty/Lt		L	T/S. Lr	P/R	C
LBCS	22103	Pre	requisite:	Nil					IE	,	0	0/0	2/0	1
			al S.Lr : ry/Lab/En	•		_				C: Credi	ts			·
• 5	dents Fo ma To de Fo fac	should ke the s velop p ilitate th	d be mad students ex- professiona he student	xpert in als with ts with e	idealist mergin	ic, pract g techno	ical and ology	-	values.					
CO1	Unde	erstand	the doma	in speci	fic knov	vledge.								
CO2	Able	to app	ly idealist	ic, pract	ical and	l moral	values.							
CO3	Fam	iliarize	with eme	rging te	chnolog	У								
Mappin	g of C	ourse (Outcomes	s with P	rogran	Outco	mes (PC	Os)						
COs/F	POs	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8 PO9 PO10 PO11 PO12					
CO	1	3	3	1	1	1	2	2	1	1	1		3	1
CO	2	3	3	2	3	3	2	2	2	2	2		3	1
CO	3	3	3	3	3	3	2	2	1	2	2		3	1
COs /PS	SOs	P	SO1		PS	O2			PSO3			F	PSO4	
CO	1		3		•	3			1				1	
CO			3		•	3			1				3	
CO			3			3			1				3	
3/2/1ind	icates	Streng	gth of Coi	relatio	n 3- H	ligh, 2-	Mediun	n, 1-Lov	W			r		
Category		Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary		Skill Component		Practical /Project		

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	С
EBCS22I03	TECHNICAL SKILL III	IE	0	0/0	2/0	1

OBJECTIVES:

- To make the students expert in domain specific knowledge.
- To develop professionals with idealistic, practical and moral values.
- To facilitate the students with emerging technology.

From the list of skill development courses declared by the department, the students are expected to acquire the skill and get certified. This will be evaluated at the end of the semester by the faculty.

DESCRIPTION:

Students should acquire skill in the domain/inter disciplinary area from government/private training centers/industries /University for a minimum period of 15 calendar days. The training can be through off line, online or mixed mode. Students are supposed to prepare Technical skill report at the end of the training and submit the report along with the certificate in proof of the training, during the viva voce examination conducted by the examiners duly appointed by the head of the department.

	COUR	SE NAI							Ty/Lb/					
CODE:		I	MINI PI	ROJECT	r /INTE	RNSHI	P		ETL/IE	L	T/S	S.Lr	P/R	C
EBCS22I04			***										210	
		uisite : N		1 T	:	D . D :	4 D -	D	IE	0	0	/0	3/0	1
L: Lecture T			•		_	·			en C: Crea	IUS				
T/L/ETL/IE :		ry/Lab/E	mbedde	1 Theory	and Lat)/ IIIteI II	ai Evaii	uation						
The student		ıld he m	nade to											
				nlant tra	ining is	to provi	da a cha	rt torm	work exp	riona	o in o	n Indu	otex/	
		Organiz		іріані па	illing is	to provi	de a silo	11-101111	work exp	51 ICIIC	c III ai	ii iiidu	su y/	
COURSE O				udents w	ill be ab	ole to								
CO1	Aspire an insight of an industry / organization/company pertaining to the domain of study.													
	Construct skills and knowledge for a smooth transition into the career. Support field experience and get linked with the professional network.													
CO3	Suppo	rt field e	xperienc	e and ge	t linked	with the	profess	ional ne	etwork.					
									ng of vari	ous po	ssible	e techn	ologie	š.
	•	_							stry resou					
Mapping of														
		PO2	PO3	1		PO6	PO7	PO8	PO9	PO	10	PO11	PC	12
CO1	2	2	3	3	2	3	3	3	3		3		3	
CO2	3	2	3	3	2	3	3	3	3		3	3		2
CO3	3	3	3	3	2	3	3	3	3		3	3		2
CO4	2	1	3	1	3	3	2	2	2		2	2		2
CO5	1	2	3	2	3	2	3	2	2		2	1		2
COs / PSOs		PSO1			PSO2				03			PS		
CO1		2			3				3			3		
CO2		3			2				3			3		
CO3		3			3				3			3		
CO4		2			3				2			3		
CO5	~	3	• ~	<u> </u>	2				3			2	2	
3/2/1 Indicat	es Str	ength O	f Correl	ation, 3	– High,	2- Medi	um, 1-	Low	1	1		1	-	
Category	Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	★ Skill Component	Practical /Project					

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C
EBCS22I04	MINI PROJECT /INTERNSHIP	IE	0	0/0	3/0	1

OBJECTIVES:

• The main objective of the In-plant training is to provide a short-term work experience in an Industry/Company/Organization

DESCRIPTION:

• MINI PROJECT:

Students will have an opportunity to expose their knowledge and talent to make an innovative project. Students are supposed to do innovative projects useful to industries/society in the area of relevant Engineering, inter and multi-disciplinary areas, under the guidance of a staff member. They have to prepare a project report and submit to the department.

At the end of the semester Viva-Voce examination will be conducted by the internal Examiner duly appointed by the Head of the department and the students will be evaluated.

INTERNSHIP

Students are supposed to undergo internship in related Industries for a minimum period of 30 days cumulatively during the semester. They have to prepare a report on the Internship with a certificate in proof from competent authority in the industry. At the end of the semester Viva-Voce examination will be conducted by the Examiners duly appointed by the Head of the department and the students will be evaluated.

VII SEMESTER

COURSE	COURS	E NAM	Œ:					Ty/L	h/		T/S.L		
CODE EBCS22012		BIG	G DAT	A ANA	LYTIC	CS		_	L/IE	L	r	P/R	C
	Prerequi					-			Гу	3	1/0	0/0	4
L : Lecture			_			-	•			Credit	S		
Ty/Lb/ETL		ry/Lab/	Embedo	ded The	ory and	Lab/In	ternal E	Evaluatio	on				
OBJECTIV		_											
The student													
	tify Big I				-								
	ınderstand		-	-	-		-						
	ntroduce l	_				_	-						
	inderstand						time a	ppiicati	ons				
COURSE (1												
CO1	Understa	and the	Big Dat	a Platfo	orm and	its Use	cases (L1)					
CO2	Able to	implem	ent Apa	che Ha	doop (L	4)							
CO3	Apply H	IDFS C	oncepts	and Int	erfacing	with H	IDFS (I	_3)					
CO4	Understa												
CO5	Understa	and Dat	a Analy	tics wit	h Cassa	ndra&]	R. (L2)						
Mapping of	f Course Outcomes with Program Outcomes (POs)												
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	0 PO	1 P()12
CO1	2	3	3	3	2	2	2	1	1	1	1		
CO2	3	3	1	3	2	2	1	1	1		1		
CO3	2	3	3	3	3	2	1	1		1			
CO4	2	3	3	2	2	1							
CO5	3	2	2	2	2	1	1				1		1
COs/		PSO1			PSO ₂			PSO	3		PS	SO4	
PSOs													
CO1		2			2			3				1	
CO2		3			2			2				2	
CO3		2			3			3				1	
CO4		2			2			3				2	
CO5 3/2/1 Indica	tog Stwar	3	Connolo	tion 2	2 High	2 Ma	dium 1					2	
3/2/1 Illuica		gui oi	Correia		– mgn	, 2- Mie	uiuiii, i	L- LOW					
Category	Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project				
			<u> </u>	√									

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	С
EBCS22012	BIG DATA ANALYTICS	Ту	3	1/0	0/0	4

UNIT I Introduction to Big Data and Hadoop

12 Hrs

Big Data overview – Types of Digital Data –Data preparation phase- Apache Hadoop – History of Hadoop – Analyzing Data with Hadoop - Hadoop Streaming – Analytical Architecture – Big data ecosystem - IBM Big Data strategy – Infosphere BigInsights and Big Sheets

UNIT II HDFS (Hadoop Distributed File System)

12 Hrs

HDFS Concepts – HDFS Architecture- HDFS Files – HDFS high availability- Analysing data with Hadoop – Hadoop Streaming – Hadoop echo System- Data flow – Types of NoSQL Databases comparison of SQL and NoSQL Data ingestion with Flume and Scoop- Hadoop archives- Hadoop I/O: Compression – Serialization – Avro – File based Data Structure

UNIT III Introduction to MongoDB and MapReduce Programming

12 Hrs

MongoDB: Features – JSON – Generating a unique key – Data types – Terms used in RDBMS and MongoDB – MongoDB Query Language – Insert method – Arrays – Indexes – Mango Import – Mongo Export – **MapReduce:** Mapper – Reducer – combiner – Partitioner – Searching – Sorting - compression

UNIT IV Introduction to Hive and Pig

12 Hrs

Hive: Introduction – Hive Architecture – Data types – File Formats – Hive Query Language Statements-Partitions – Bucketing – Views - Sub Query – joins - Aggregations – Group by Having – Hive user defined function – Serialization and Deserialization **Pig:** Primitive Data Types – Running Pig – Execution Modes of Pig – HDFS commands – Relational Operators – Eval Function - Complex Data Types – Piggy Bank – User defined functions – Parameter Substitution

UNIT V Introduction to Cassandra

12 Hrs

Apache Cassandra – Introduction – Features of Cassandra – Peer to Peer Networks – Gossip and failure detection – Partitioner - Replication Factor – Anti-Entropy and Read Repair – writes in Cassandra. Analytics with R – Big Data Analytics with BigR

Total Hours: 60

TEXT BOOKS:

- 1. Seema Acharya, SubhasiniChellappan, "Big Data Analytics" Wiley Publication, 2015
- 2. Tom White "Hadoop: The DefintiveGudie 4th Edition, O'Reilly, 2015

REFERENCE BOOKS:

- 1. Jay Liebowitz, "Big Data and Business Analytics" Auerbach Publications, CRC press (2013)
- 2. Michael Mineli, Michael Chambers, Ambiga Dhiraj, "Big Data, Big Analytics: Emerging Business Intelligence and Analytic Trends for Today's Businesses", Wiley Publications, 2013
- 3. ArvindSathi, "BigDataAnalytics: Disruptive Technologies for Changing the Game", MC Press, 2012

COURSE CODE EBCS22013	COURSE NAME: CONNECTED BUSINESS	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C
EBCS22013	Prerequisite: Nil	Ty	3	0/0	0/0	3

L: Lecture T: Tutorial S.Lr: Supervised Learning P: Project R: Research C: Credits

Ty/Lb/ETL/IE: Theory/Lab/Embedded Theory and Lab/Internal Evaluation

OBJECTIVES:

The students should be made to

- To study fundamental concepts of IoT.
- To understand roles of sensors in IoT

• To underst												
 To learn d 	lifferent	protocol	ls used fo	or IoT d	esign							
 To be fam 	iliar wit	h IoT an	d M2M									
 To underst 	and the	role of I	oT in va	rious do	mains of	f Industr	y.					
COURSE OUT	COME	S (COs): Stude	nts will	be able t	to						
CO1	Unders	stand the	various	concep	ts, termii	nologies	and arc	hitecture	of IoT sys	tems.		
CO2	Apply	sensors	and actu	ators for	r design	of IoT.						
CO3	Unders	stand and	d apply v	arious p	protocols	for desi	gn of Io	T system	ıs			
CO4	Analyz	e the Di	fference	betwee	n IoT an	d M2M						
CO5	Unders	stand AF	Is to con	nnect Io	T related	technol	ogies					
Mapping of Co	urse Ot	ıtcomes	with Pr	ogram	Outcom	es (POs)					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	2	1	2	1	1	2	2	3	2
CO2	3	2	3	2	1	2	1	3	3	2	3	2
CO3	3	2	3	2	3	3	2	2	3	3	3	2
CO4	3	2	3	2	2	3	3	2	3	3	3	2
CO5	3	2	2	2	2	3	2	2	3	3	3	2
COs / PSOs		PSO1			PSO2	•		PSO	3		PSO4	1
CO1		2			2			1			2	
CO2		3			3			3			3	
CO3		3			3			3			3	
CO4		3			3			3			3	
CO5		3			3			3			2	
3/2/1 Indicates	Strengt	h Of Co	orrelatio	n, 3 – H	High, 2- 1	Medium	, 1- Lov	v		L		
Category	Basic Sciences	Engineering Sciences	Humanities and Social Sciences	Program Core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skill	Soft Skills			
					✓							

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	С
EBCS22013	CONNECTED BUSINESS	Ту	3	0/0	0/0	3

UNIT I Introduction of IoT

9 HRS

Introduction- Characteristics of IoT- Physical & Logical Design of IoT-Enabling Technologies in IoT-IoT Levels and Deployment Templates.

UNIT II Sensors Networks

9 HRS

Definition-Types of Sensors-Types of Actuators, Examples and Working-IoT Development Boards: Arduino IDE and Board Types-RaspberryPi Development Kit-RFID Principles and components-Wireless Sensor Networks: History and Context, The node, Connecting nodes, Networking Nodes.

UNIT III Wireless Technologies for IoT

9 HRS

WPAN Technologies for IoT: IEEE 802.15.4, Zigbee, HART, NFC, Z-Wave, BLE, Bacnet, Modbus-IP Based Protocols for IoT IPv6, 6LowPAN, RPL, REST, AMPQ, CoAP, MQTT-Edge connectivity and protocols.

UNIT IV IoT and M2M

9 HRS

Introduction- M2M-Difference between IoT and M2M-SDN and NFV for IoT.

UNIT V Applications of IoT

9HRS

Home Automation-Smart Cities- Energy- Retail Management- Logistics-Agriculture-Health and Lifestyle-Environment-Energy.

Total Hours: 45

TEXT BOOK:

- Vijay Madisetti and ArshdeepBahga, "Internet of Things (A Hands-on-Approach)", 1 st Edition, VPT, 2014.
- 2. HakimaChaouchi, "The Internet of Things Connecting Objects to the Web" ISBN: 978-1-84821-140-7, Wiley Publications
- 3. Olivier Hersent, David Boswarthick, and Omar Elloumi, "The Internet of Things: Key Applications and Protocols", WileyPublications
- 4. J. Biron and J. Follett, "Foundational Elements of an IoT Solution", O'Reilly Media, 2016.

REFERENCE BOOK:

- 1. Daniel Minoli, "Building the Internet of Things with IPv6 and MIPv6: The Evolving World of M2M Communications", ISBN: 978-1-118-47347-4, Willy Publications
- 2. Pethuru Raj and Anupama C. Raman, "The Internet of Things: Enabling Technologies, Platforms, and Use Cases", CRC Press

COURSE CODE	COUI	RSE NA		IID CC	OMPUT	ING			Ty/Lb/	L	T/S.	Lr	P/R	C
EBCS22014	-					1110			ETL/IE		4.4	2	0.70	_
I . I actumo T			Compu			D . I	Duningt	D . Dag	Ty	3	1/0)	0/0	4
L : Lecture T Ty/Lb/ETL/II						_				rear	ts			
OBJECTIVE		31 y/Lao	Linoco	ided III	icory am	u Lau/ II	incinai .	Lvaruat	1011					
The students		be mad	le to											
 Identif 	fy the te	echnica	l founda	ations o	f cloud	systems	archite	ectures.						
	•				s to clou	•			s.					
-	_						_		manageme	ent.				
 Identif 	fy and c	define to	echnical	l challe	nges for	cloud a	applicat	ions and	d assess th	neir ii	mporta	ance.		
COURSE O	UTCO	MES (C	COs) :St	tudents	will be al	ble to								
CO1	Under	rstand tl	he funda	amenta	l princip	oles of c	loud co	mputin	g. [L2]					
CO2									computin	g and	l how	this ha	ıs	
			_		Cloud (1	_				
CO3					Cloud (
CO4					Infrastr									
CO5					Cloud Se			[]						
Mapping of (•										
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P	O10	PO11	P	012
CO1	3	3	3	2	3	2	2	2	3		2	3		3
CO2	3	3	3	2	3	2	2	2	3		2	3		3
CO3	3	2	3	2	3	2	2	3	2		3	2		2
CO4	3	2	2	2	3	2	2	2	3		2	3		2
CO5	3	3	2	2	3	2	2	2	3		2	3		2
GO / PGO		DCC1			DCCA			DC(22			DOO		
COs / PSOs		PSO1			PSO2			PS(J3			PSO	4	
CO1		3			3			2				3		
CO2		3			3			2				3		
CO3		3			3			3				2		
CO4		3			2			3				2		
CO5	Q.	3	0.0	•	2			3				2		
3/2/1 Indicate	es Strei	ngth O	f Corre	lation,	3 – Hig	h, 2- M	ledium,	, 1- Lov	V	I	1			
			cial		စ									
			008		ctiv		ıary	ent	ect					
ory	nce		and	ıre	Program elective	ve ve	plin	nod	Proj					
Category	Basic Science	ring	ties	Co	am	ecti	isci	lwo	 al /1					
Ca	ic S	nee]	anit	ram	.ogr	ı El	r D	11 C	ctic.					
	Bas	Engineering Science	Humanities and social Science	Program Core	Pr	Open Elective	Inter Disciplinary	Skill Component	Practical /Project					
		ПŅ	ΞŠ	✓			, ,							
				V										

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C
EBCS22014	CLOUD COMPUTING	Ту	3	1/0	0/0	4

UNIT I-FOUNDATION 12 Hrs

Introduction to Cloud Computing, Migrating into a Cloud, Enriching the 'Integration as a Service' Paradigm for the Cloud Era, The Enterprise Cloud Computing Paradigm

UNIT II-INFRASTRUCTURE AS A SERVICE (IAAS)

12 Hrs

Virtual Machines Provisioning and Migration Services, On the Management of Virtual Machines for Cloud Infrastructures, Enhancing Cloud Computing Environments Using a Cluster as a Service, Secure Distributed Data Storage in Cloud Computing

UNIT III-PLATFORM AND SOFTWARE AS A SERVICE (PAAS/IAAS)

12 Hrs

Aneka—Integration of Private and Public Clouds, CometCloud: An Autonomic Cloud Engine, T-Systems' Cloud-Based Solutions for Business Applications, Workflow Engine for Clouds, Understanding Scientific Applications for Cloud Environments, TheMapReduce Programming Model and Implementations

UNIT IV-MONITORING AND MANAGEMENT

12 Hrs

An Architecture for Federated Cloud Computing, SLA Management in Cloud Computing: A Service Provider's Perspective, Performance Prediction for HPC on Clouds

UNIT V-APPLICATIONS

12 Hrs

Best Practices in Architecting Cloud Applications in the AWS Cloud, Massively Multiplayer Online Game Hosting on Cloud Resources, Building Content Delivery Networks Using Clouds, Resource Cloud Mashups

Total Hours: 60

TEXT BOOKS:

1.Buyya, Rajkumar, James Broberg, and Andrzej M. Goscinski, eds. *Cloud computing: Principles and paradigms*. John Wiley & Sons, 2010.

REFERENCE BOOKS:

- 1. Voorsluys, William, James Broberg, and RajkumarBuyya. "Introduction to cloud computing." *Cloud computing: Principles and paradigms* (2011): 1-44.
- 2. Shawish, Ahmed, and Maria Salama. "Cloud computing: paradigms and technologies." *Inter-cooperative collective intelligence: Techniques and applications*. Springer, Berlin, Heidelberg, 2014. 39-67.
- 3.Birje, Mahantesh N., et al. "Cloud computing review: concepts, technology, challenges and security." *International Journal of Cloud Computing* 6.1 (2017): 32-57

COURSE CODE EBCS22015	COUR			IINE L	EARN	ING			Fy/Lb/ ETL/IE	L	T/S.Lı	P/	R	С
EB COZZVIC	Prerequ	uisite: A	rtificia	l Intelli	gence			, , , , , , , , , , , , , , , , , , ,	Гу	3	0/0	0/	0	3
L : Lecture T	: Tutoria	al S.L	r : Supe	rvised	Learnir	ng P : F	roject	R : Res	search C:	Crec	dits		l	
Ty/Lb/ETL/IE		ry/Lab/l	Embedo	ded The	eory and	d Lab/Iı	nternal :	Evaluat	ion					
OBJECTIVE The set of a set			4 -											
The students				or macl	nina lan	rning f	or vario	uc nr oh	olem solvi	na				
						_		-	pervised l	_	ino aloc	rithm	s in	
	machin			pervise	a, sem	superv	isca an	ia ansa	per visea i	Cuili	ing arge	11011111		
•		tand the	_	trends	in mach	nine lear	rning							
•							_	r proble	em solvin	g				
COURSE OU	JTCOM	IES (C	Os): Stu	ıdents v	will be	able to								
CO1				achine	learnin	g algor	ithms a	nd term	inologies	and	l perform	n data	pre	;-
COZ	-	sing[L2]	_	•	11 '	1	*41	, 1 .	4		1 1	1		
CO2	Apply a given p		-	pervised	ı learni	ng algo	rithms	to desig	n predict	ive r	nodels t	o solv	e ar	ıy
CO3)			sunervi	sed lear	rning al	garithn	ns and a	levelop ap	nlic	eations f	or		
CO3	perform			-		_	_		icvelop ap	pric	Zations i	01		
CO4									ial neural	netv	vorks an	d ker	nel	
	machin				1 1	•	C	,						
CO5	Unders	tand an	d apply	probal	oilistic į	graphic	al mode	els for s	uitable ap	plic	ations[I	.2]		
Mapping of (ı	1				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P	O10 P	011)12
CO1	3	3	3	1	3	2	1	1				1		1
CO2	3	3	3	3	3	2	1	1				1		<u>1</u> 1
CO4	3	3	3	3	3	2	1	1				1 1		2
CO5	3	3	3	3	3	1	1					1		1
COs / PSOs		PSO1			PSO2	_		PSC)3		I	SO4	_	-
CO1		2			1			1				3		
CO2		3			2			2				2		
CO3		3			2			3	_		_	3		
CO4		3			3			2				3		
CO5	~	3	~ -		3			3				3		
3/2/1 Indicate	es Stren	gth Of	Correla	ation, 3	3 – Hig	h, 2- M	edium,	, 1- Lov	<i>W</i>					
Category	Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project					

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C
EBCS22015	MACHINE LEARNING	Ту	3	0/0	0/0	3

UNIT I: INTRODUCTION TO MACHINE Learning

9 Hrs

Machine Learning Fundamentals –Types of Machine Learning - Supervised, Unsupervised, Reinforcement-The Machine Learning process. Terminologies in ML-Testing ML algorithms: Overfitting, Training, Testing and Validation Sets-Confusion matrix -Accuracy metrics- ROC Curve- Basic Statistics: Averages, Variance and Covariance, The Gaussian- The Bias-Variance trade off- Applications of Machine Learning.

UNIT II: SUPERVISED LEARNING

9 Hrs

Regression: Linear Regression – Multivariate Regression- Classification: Linear Discriminant Analysis, Logistic Regression- K-Nearest Neighbor classifier. Decision Tree based methods for classification and Regression- Ensemble methods.

UNIT III: UNSUPERVISED LEARNING

9 Hrs

Clustering- K-Means clustering, Hierarchical clustering - The Curse of Dimensionality –Dimensionality Reduction - Principal Component Analysis - Probabilistic PCA- Independent Components analysis

UNIT IV: ARTIFICIAL NEURAL NETWORKS AND KERNEL MACHINES 9 Hrs

Perceptron- Multilayer perceptron- Back Propagation – Initialization, Training and Validation Support Vector Machines (SVM) as a linear and non-linear classifier - Limitations of SVM

UNIT V: PROBABILISTIC GRAPHICAL MODELS

9 Hrs

Bayesian Networks - Learning Naive Bayes classifiers-Markov Models - Hidden Markov Models Sampling - Basic sampling methods - Monte Carlo - Reinforcement Learning

Total Hours: 45

TEXT BOOKS

- 1. Kevin P. Murphy, "Machine Learning: A Probabilistic Perspective", MIT Press, 2012.
- 2. Stephen Marsland, "Machine Learning –An Algorithmic Perspective", CRC Press, 2009.
- 3. SaikatDutt, Subramanian Chandramouli, Amit Kumar Das, "Machine Learning", Pearson Education, 2018.
- 4. Christopher Bishop, "Pattern Recognition and Machine Learning" Springer, 2011.

REFERENCE BOOKS

- 1. Andreas C. Muller, "Introduction to Machine Learning with Python: A Guide for Data Scientists", O'Reilly,2016.
- 2. Sebastian Raschka, "Python Machine Learning", Packt Publishing, 2015.

COURSE CODE EBCS22L09		RSE NA Analy	tics La	b using lgorith	•	ine Lea	rning	Ty/Lt		L		S.L r	P/R	C
	Prerec	quisite:	Artifici	al Intell	ligence			L	b	0	0.	/0	3/0	1
L: Lecture T			-			-	•	R: Res		C: Cre	dits			
Ty/Lb/ETL/II		ory/Lab	Embec	ided In	ieory an	ia Lab/.	internai	Evalua	tion					
OBJECTIVE The students		ho mad	la to											
			a Analy	tics Pro	hlems									
COURSE OU						able to								
CO1	Explo	re the E	Big Data	a Platfo	rm Had	oop and	l its Use	e cases ((L4)					
CO2								ing Had	loop (L	5)				
CO3			Big data											
CO4	-		mpleme					<u> </u>						
CO5			Decision											
Mapping of COs/POs	PO1	PO2	PO3	rog PO4	PO5	PO6	PO7	PO8	PO9	PO	10	PO1	1 D4	012
COS/POS CO1					ļ				-	+	-	POI	1 P	
CO2	2	3	1	3	3	3	2 2	1	1	1				1
CO2	3	2	3	3	3	2 2	1	1	1	1		1		
CO4	3	2	3	2	2	2	1		1	+		1		
CO5	2	3	2	2	2	2	1							
		3			4		1							
COs / PSOs		PSO1			PSO2	<u> </u>		PSO3				PSC)4	
CO1		3			2			3				2		
CO2		2			2			2				2		
CO3		3			3			2				1		
CO4		2			1			1				2		
CO5		3			2			2				1		
3/2/1 Indicate	es Stre	ngth of	Corre	lation,	3 – Hig	h, 2- M	ledium,	, 1- Lov	7	Ī	-			
Category	Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project					

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.L r	P/R	C
EBCS22L09	Data Analytics Lab using Machine Learning Algorithms	Lb	0	0/0	3/0	1

List of Experiments

- 1. Downloading and installing Hadoop; Understanding different Hadoop modes. Start-up scripts, Configuration files.
- 2. Hadoop Implementation of file management tasks, such as Adding files and directories, Retrieving files and Deleting files
- 3. Implement of Matrix Multiplication with Hadoop Map Reduce
- 4. Run a basic Word Count Map Reduce program to understand Map Reduce Paradigm.
- 5. Implementation of K-means clustering using Map Reduce
- 6. Implement and demonstrate the FIND-S Algorithm for finding the most specific hypothesis based on a given set of training data samples. Read the training data from a CSV file.
- 7. For a given set of training data examples stored in a .CSV file, implement and demonstrate the Candidate-Elimination algorithm to output a description of the set of all hypotheses consistent with the training examples.
- 8. Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample.
- 9. Build an Artificial Neural Network by implementing the Backpropagation algorithm and test the same using appropriate data sets.
- 10. Write a program to implement the naïve Bayesian classifier for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets.

COURSE	COUI	RSE NA	AME:					Ty	/Lb/					
CODE				COMP	UTIN	G LAB		-	rL/IE	L	T/S.	Lr 1	P/R	C
EBCS22L10	Drered	quisite:						Lt		0	0/0	1	3/0	1
L : Lecture T :				nervise	d Learr	ning P	· Proied			-			,, 0	1
Ty/Lb/ETL/IE			-	-		_	•				01001			
OBJECTIVE														
The students	should	be mad	e to											
Be exp	osed to	tool ki	its of cl	loud en	vironn	nent.								
								_	framew	ork				
• Learn				es of di	ifferent	config	uration	•						
• Learn t														
COURSE OU	JTCON	AES (C	COs): S	Student	s will be	e able to)							
CO1	To lea	rn the	design	and de	velonm	ent pro	cess in	volved	in crea	ing	a clon	ıd bası	ed	
_		ation[L	_			· r-~			<i>y</i> = 2 33	0				
COA	- 1			, .		11 1				1	FT 63			
CO2	To lea	ırn to ir	npleme	ent and	use pa	rallel p	rogram	mıng u	sing Ha	.dooj	p[L3]			
CO3	To lea	ırn to u	se virtu	ıalizati	on [L1]									
						-								
CO4	Manip	oulate la	arge da	ita sets	in a pa	rallel e	nvironn	nent. [I	ـ3]					
CO5	Instal	l and us	se a ger	neric cl	oud en	vironm	ent that	can be	used a	san	rivate	cloud	Ins	stall
									is a priv					, tull
Mapping of C		Outcor	mes wi	th Pro	oram (14								
COs/POs	$\mathbf{D} \mathbf{O} 1$	DOA							DOG		010	DO1	. -	2012
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P	010	PO1	1 F	2012
CO1	3	3	PO3 3	PO4 2	PO5 3	PO6 2	PO7 2	PO8 2	3	P	2	3	1 F	3
CO1 CO2	3 3	3 2	PO3 3 3	PO4 2 2	PO5 3 3	PO6 2 2	PO7 2 2	PO8 2 2	3	P	2 2	3	l F	3
CO1 CO2 CO3	3 3 2	3 2 2	PO3 3 3	PO4 2 2 2	PO5 3 3 3	PO6 2 2 1	PO7 2 2 2	PO8 2 2 1	3 3 2	Po	2 2 3	3 3 2	1 F	3 3 1
CO1 CO2 CO3 CO4	3 3 2 3	3 2 2 2	PO3 3 3 2	PO4 2 2 2 2	PO5 3 3	PO6 2 2 1 2	PO7 2 2 2 2	PO8 2 2 1 2	3 3 2 2	Po	2 2 3 2	3 3 2 1	I F	3 3 1 2
CO1 CO2 CO3 CO4 CO5	3 3 2	3 2 2 2 3	PO3 3 3	PO4 2 2 2	PO5 3 3 3 3 1	PO6 2 2 1 2 2	PO7 2 2 2	PO8 2 2 1 2 2 2 2	3 3 2 2 3	Po	2 2 3	3 3 2 1 3		3 3 1
CO1 CO2 CO3 CO4	3 3 2 3	3 2 2 2	PO3 3 3 2	PO4 2 2 2 2	PO5 3 3 3 3	PO6 2 2 1 2 2	PO7 2 2 2 2	PO8 2 2 1 2	3 3 2 2 3	P	2 2 3 2	3 3 2 1 3 PSO 3		3 3 1 2
CO1 CO2 CO3 CO4 CO5 COs/PSOs	3 3 2 3	3 2 2 2 3 PSO1 3 3	PO3 3 3 2	PO4 2 2 2 2	PO5 3 3 3 1 PSO2	PO6 2 2 1 2 2	PO7 2 2 2 2	PO8 2 2 1 2 2 PSO	3 3 2 2 3	Pe	2 2 3 2	3 3 2 1 3 PSO 3		3 3 1 2
CO1 CO2 CO3 CO4 CO5 COs / PSOs CO1 CO2 CO3	3 3 2 3	3 2 2 2 3 PSO1 3	PO3 3 3 2	PO4 2 2 2 2	PO5 3 3 3 1 PSO2 3 2 2	PO6 2 2 1 2 2	PO7 2 2 2 2	PO8 2 2 1 2 PSO 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 3 2 2 3	Pe	2 2 3 2	3 2 1 3 PSO 3 3		3 3 1 2
CO1 CO2 CO3 CO4 CO5 COs/PSOs CO1 CO2 CO3 CO4	3 3 2 3	3 2 2 2 3 PSO1 3 3 3	PO3 3 3 2	PO4 2 2 2 2	PO5 3 3 3 1 PSO2 2 1	PO6 2 2 1 2 2	PO7 2 2 2 2	PO8 2 2 1 2 PSO 2 1 2 2 2 2 2 2 2 2 2 2 2	3 3 2 2 3	Pe	2 2 3 2	3 2 1 3 PS(3 3 2 1		3 3 1 2
CO1 CO2 CO3 CO4 CO5 COs / PSOs CO1 CO2 CO3 CO4 CO5	3 2 3 3	3 2 2 3 PSO1 3 3 1 1	PO3 3 3 2 1	PO4 2 2 2 2 2 2	PO5 3 3 3 1 PSO2 3 2 1 1	PO6 2 2 1 2 2	PO7 2 2 2 2 2 2	PO8 2 2 1 2 PSO 2 1 2 3	3 3 2 2 2 3	Po	2 2 3 2	3 2 1 3 PSO 3 3		3 3 1 2
CO1 CO2 CO3 CO4 CO5 COs/PSOs CO1 CO2 CO3 CO4	3 2 3 3	3 2 2 3 PSO1 3 3 1 1	PO3 3 3 2 1	PO4 2 2 2 2 2 2	PO5 3 3 3 1 PSO2 3 2 1 1	PO6 2 2 1 2 2	PO7 2 2 2 2 2 2	PO8 2 2 1 2 PSO 2 1 2 3	3 3 2 2 2 3	Po	2 2 3 2	3 2 1 3 PS(3 3 2 1		3 3 1 2
CO1 CO2 CO3 CO4 CO5 COs / PSOs CO1 CO2 CO3 CO4 CO5	3 2 3 3	3 2 2 3 PSO1 3 3 1 1	PO3 3 3 2 1	PO4 2 2 2 2 2 2	PO5 3 3 3 1 PSO2 3 2 1 1	PO6 2 2 1 2 2	PO7 2 2 2 2 2 2	PO8 2 2 1 2 PSO 2 1 2 3	3 3 2 2 2 3	Po	2 2 3 2	3 2 1 3 PS(3 3 2 1		3 3 1 2
CO1 CO2 CO3 CO4 CO5 COs / PSOs CO1 CO2 CO3 CO4 CO5	3 2 3 3	3 2 2 3 PSO1 3 3 1 1	PO3 3 3 2 1	PO4 2 2 2 2 2 2	PO5 3 3 3 1 PSO2 2 1 1 , 3 - H	PO6 2 2 1 2 2	PO7 2 2 2 2 2 2 Mediu	PO8 2 2 1 2 PSO 2 1 2 3 m, 1- I	3 2 2 3 3 3	Po	2 2 3 2	3 2 1 3 PS(3 3 2 1		3 3 1 2
CO1 CO2 CO3 CO4 CO5 COs / PSOs CO1 CO2 CO3 CO4 CO5 SOJUMENTO SOJUM	3 2 3 3 3	3 2 2 3 PSO1 3 3 1 1	PO3 3 3 2 1	PO4 2 2 2 2 2 2 elation	PO5 3 3 3 1 PSO2 2 1 1 , 3 - H	PO6 2 2 1 2 2 2	PO7 2 2 2 2 2 2 Mediu	PO8 2 2 1 2 PSO 2 1 2 3 m, 1- I	3 2 2 3 3 3	Po	2 2 3 2	3 2 1 3 PS(3 3 2 1		3 3 1 2
CO1 CO2 CO3 CO4 CO5 COs / PSOs CO1 CO2 CO3 CO4 CO5 SOJUMENTO SOJUM	3 2 3 3 3	3 2 2 2 3 PSO1 3 3 3 1 1 ngth Of	PO3 3 3 2 1	PO4 2 2 2 2 2 2 elation	PO5 3 3 3 1 PSO2 2 1 1 , 3 - H	PO6 2 2 1 2 2 2	PO7 2 2 2 2 2 2 Mediu	PO8 2 2 1 2 PSO 2 1 2 3 m, 1- I	3 2 2 3 3 3	Po	2 2 3 2	3 2 1 3 PS(3 3 2 1		3 3 1 2
CO1 CO2 CO3 CO4 CO5 COs / PSOs CO1 CO2 CO3 CO4 CO5 SOJUMENTO SOJUM	3 2 3 3 3	3 2 2 2 3 PSO1 3 3 3 1 1 ngth Of	PO3 3 3 2 1	PO4 2 2 2 2 2 2 elation	PO5 3 3 3 1 PSO2 2 1 1 , 3 - H	PO6 2 2 1 2 2 2	PO7 2 2 2 2 2 2 Mediu	PO8 2 2 1 2 PSO 2 1 2 3 m, 1- I	3 2 2 3 3 3	Po	2 2 3 2	3 2 1 3 PS(3 3 2 1		3 3 1 2
CO1 CO2 CO3 CO4 CO5 COs / PSOs CO1 CO2 CO3 CO4 CO5	3 2 3 3 3	3 2 2 2 3 PSO1 3 3 3 1 1 ngth Of	PO3 3 3 2 1	PO4 2 2 2 2 2 2 elation	PO5 3 3 3 1 PSO2 3 2 1 1	PO6 2 2 1 2 2 2	PO7 2 2 2 2 2 2 Mediu	PO8 2 2 1 2 PSO 2 1 2 3 m, 1- I	3 2 2 3 3 3	Po	2 2 3 2	3 2 1 3 PS(3 3 2 1		3 3 1 2
CO1 CO2 CO3 CO4 CO5 COs / PSOs CO1 CO2 CO3 CO4 CO5 SOJUMENTO SOJUM	3 2 3 3	3 2 2 3 PSO1 3 3 1 1	PO3 3 3 2 1	2 2 2 2 2 2 2 elation	PO5 3 3 3 1 PSO2 2 1 1 , 3 - H	PO6 2 2 1 2 2	PO7 2 2 2 2 2 2	PO8 2 2 1 2 PSO 2 1 2 3	3 3 2 2 2 3	Po	2 2 3 2	3 2 1 3 PS(3 3 2 1		3 3 1 2

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	С
EBCS22L10	CLOUD COMPUTING LAB	Lb	0	0/0	3/0	1

List of Experiments

- 1. Install Virtualbox/VMware Workstation with different flavours of linux and windows OS on top of windows 7 or 8 or 10.
- 2. Install a C compiler in the virtual machine created using virtual box and execute Simple Programs
- 3. Install Google App Engine. Create hello world app and other simple web applications using python/java.
- 4. Use GAE launcher to launch the web applications.
- Simulate a cloud scenario using CloudSim and run a scheduling algorithm that is not present in CloudSim.
- 6. Find a procedure to transfer the files from one virtual machine to another virtual machine.
- 7. Find a procedure to launch virtual machine using try stack (Online Open stack Demo Version)
- 8. Install Hadoop single node cluster and run simple applications like word count.

COURSE	COURS	SE NAM	E:						Ty/Lb/				
CODE: EBCS22I05				OJECT	PHASE	E - I			ETL/IE	L	T/S.Lr	P/R	C
EBC522103	Prerequ	isite: NI	L						IE	0	0/0	3/3	3
L : Lecture T :	Tutorial	S.Lr:	Supervi	sed Lea	rning P	: Project	R : Res	search	C: Credits				
T/L/ETL /IE: T	Theory/L	ab/Embe	edded Tl	heory ar	ıd Lab/Iı	nternal l	Evaluat	ion					
OBJECTIVE	:												
The students	should I	be made	e to										
- The ob	.:	f dha Ma	in Dunia		1	- 41	مانسان	4	، مادان د مسال			1	
									nd provide at the direction				
									owledge ar				
									itically and				
	n, make							iiiiik Ci	itically and	Creati	very, ma	un optii	iiiui
					•								
COURSE OU	TCOME	ES (COs)): Stude	ents will	be able	to							
CO1	Apply t	he know	ledge an	d skills	acquired	l in the c	ourse of	f study	addressing	a sne	cific prob	lem or is	cciie
CO2		the softv				i ili tile c	ourse of	study,	addicssing	, a spec	ciric prob	icili oi i	ssuc.
CO3						and crea	tively a	hout so	ocietal issue	es and	l develon	user fri	iendly
CO3	solution	_	onto to t	tillik Ci	itically t	ana crea	uvery a	oout se	ociciai issai	cs and	develop	user iii	iciidi
CO4			l experie	ence and	l get link	ed with	the prof	essiona	l network.				
	Сиррого		. cperr		800 11111		one pror	•5510110					
CO5	Equip tl	he studer	nts with	industry	knowle	dge and	understa	anding	of various p	ossib	le technol	ogies.	
Mapping of C									•				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	0 PO1	1 PO	12
CO1	3	3	2	3	2	3	2	2		2	2 3	3	3
CO2	3	3	3	3	3	3	3	2			2 3		3
CO3	3	3	3	3	3	3	3	2			3 3		3
CO4	3	2	3	3	3	3	2	3		3			3
CO5	2	2	2	2	2	2	3	2	2	2	2 1	-	2
GG / PGG		DGG4			DGG A						-	10.4	
COs / PSOs		PSO1			PSO2			PS	03		PS	604	
CO1		3			2			3	3			3	
CO2		3			3			3	3			3	
CO3		3			3			3	3			3	
CO4		2			2			2				2	
CO5		3			2				3			2	
3/2/1 Indicates	s Strengt	th Of Co	rrelatio	on, 3 – I	ligh, 2-	Mediun	1, 1- Lo	W					
			cia		e e								
			l so		ctiv		nar)	ent	ect				
ory	ıce		and	<u>5</u>	elec	se ve	nilo	onoc	roj				
Category	;	ing	es	C_{OI}	Program elective	ctiv	scil	-lmb	1/F				
at	Š	eeri ee	niti č	III	gra	Ele	Ö	ပိ	ica				
	()			i LUi		1 -	1 .	1—	I 🛫		1	1	
O	asic	gin	ma	gr	Pro	en	te.	ki.	l Iac				
	Basic Science	Engineering Science	Humanities and social Science	Program Core	Pro	Open Elective	Inter Disciplinary	Skill Component	Practical /Project				

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	С
EBCS22I05	PROJECT PHASE – I	IE	0	0/0	3/3	3

OBJECTIVE:

B. Tech CSE Project carries 12 credits of which, Phase I carries 2 credit.

In Phase I, Students are expected to

- i. Identify a Problem.
- ii. Have the feasibility explored.
- iii. Freeze the Requirement specification (both user and system).
- iv. Construct the architectural model (as many as required).
- v. Design the solution.
- vi. If possible, publish the Feasibilty study as a survey paper

DESCRIPTION:

Students are expected to do the Project in a group of 3 to 4 students. They should identify the area/topic of the Project and should collect the literatures related to the project. Students intending to do Industrial projects will approach the industries with the support of the university, identify the industrial problem and finalize the project. In case of Industrial projects apart from Industry guide, a guide has to be appointed by the department. At the end of the Semester the students should submit their Project Phase - I report to the Department and Viva -Voce examination will be conducted by the examiners duly appointed by the Head of the department.

COURSE CODE: EBFL22IXX	COURSE NAME: FOREIGN LANGUAGE				Ty/.	Lb/ CTL/IE	L	T/S.L	r P/	R C			
Prerequisite: 1								IE	1	0/0	1/0) 1	
L: Lecture T: Tutorial S.Lr: Supervised Learning P: Project R: Research C: Credits T/L/ETL/IE: Theory/Lab/Embedded Theory and Lab/Internal Evaluation													
OBJECTIVE:													
The students sh				s nr act	ices an	d herit	age of t	he fore	ign countr	W C	ammiin	icate	
_				-			-		riate manı	•			
speakers o	of that la	anguag	e.					11 1					
COURSE OUT	COMES	S (COs): Stud	ents wi	ll be ab	le to							
CO1	Achie	ve func	tional p	oroficie	ncy in	listenin	g, speal	king, re	eading, and	d wr	iting.		
CO2									e process of			and c	ılture
	acquis	ition.	-				-		-				
CO3	Decod	le, anal	yze, an	d interp	ret autl	hentic t	exts of	differe	nt genres.				
Mapping of Cour	se Outco	omes w	ith Prog	gram O	utcome	s (POs)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P(D10 I	PO11	PO1
CO1	1	1	1	1	1	3	1	3	2		3	3	1
CO2	2	1	1	1	1	3	1	3	3		3	3	1
CO3	1	1	2	2	1	3	2	3	2		3	3	1
COs / PSOs	PS	01	PS	O2	PS	O3	PSO4						
CO1	1	L	1	1	1	1	1						
CO2	1	[1	1	1	1	1						
CO3	1			2		2	1						
3/2/1 Indicates St	rength (Of Corr	elation,	3 – Hig	gh, 2- N	Iedium	, 1- Low	7		_		,	
Category	Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project				
			✓										

Dr.M.G.R. Educational and Research Institute (Deemed to be University)
Department of Computer Science and Engineering
2022 Regulation

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C
EBFL22IXX	FOREIGN LANGUAGE	ΙΕ	1	0/0	1/0	1

OBJECTIVE:

To recognize the cultural values, practices, and heritage of the foreign country, communicate effectively in a foreign language and interact in a culturally appropriate manner with native speakers of that language

DESCRIPTION:

Foreign language is introduced in the curriculum to make the students globally employable. Students should select and register for any one of the foreign languages from the given list. At the end of the course students should be able to read, write and converse the language in the basic level. At the end of the semester the assessment will be done through internal examination by the examiner duly appointed by the head of the department.

S.NO	COURSE CODE	COURSE NAME
1	EBFL22I01	FRENCH
2	EBFL22I02	GERMAN
3	EBFL22I03	JAPANESH
4	EBFL22I04	ARABIC
5	EBFL22I05	CHINESE
6	EBFL22I06	RUSSIAN
7	EBFL22I07	SPANISH

VIII SEMESTER

COURSE CODE: EBCC22ID2	COURSE AND BEH				OF MAN	AGEMI	ENT	Ty/Lb/ ETL/IE	L	T/S Lr	P/R	C
EBCC22ID2	Prerequi	site: Nil						Ty	3	0/0	0/0	3
L:LectureT:	Γutorial	SLr:S	upervis	sedLear	ningP:I	ProjectF	R:Resear	chC:Credi	ts			
T/L/ETL/IE:7	Theory/La	b./Emb	eddedT	Theorya	ndLab.	/Interna	l Evalua	ation				
OBJECTIVE:	The stude	ents sho	uld be	made to)							
	• About th						_	Studies				
	• The app		-	-	U							
COURSEOUT	• The syst					lling in th	ne organiz	cation.				
CO1						owledge	in aspect	of Managem	ent Studie	s (Level 2)		
CO2	Understand											
CO3	Understand						(20 / 01 2					
CO4	Demonstra						(Level 3)					
CO5	Analyze ar						, ,					
Mapping of C	ourse Outo	omes (C	Os)with	Progra	m Outco	mes (PO	s)&Prog	ram Specific	c Outcome	es (PSOs)		
COs/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3		2		3	3	2	3	2
CO2	3	2	2	3		2		3	2	3		2
CO3	3			2			3	2		2	2	2
CO4	3	3	3	3		2		2	2	2	2	2
CO5	2	3	3		3	3	3	2	3	2	2	2
COs /PSOs	P	SO1		PSO2		PSO3	PSO4					
CO1			2	2		3	3					
CO2				2		3	3					
CO3				2		3	3					
CO4				2		3	3					
CO5			,	2	•	3	3					
Category	Basic Science	Engineeri ng Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project			
							•					

	COURSE NAME: PRINCIPLES OF MANAGEMENT AND BEHAVIORAL SCIENCE	Ty/Lb/ ETL/IE	L	T/SLr	P/R	C
EBCC22ID2	Prerequisite: Nil	Ty	3	0/0	0/0	3

UNIT- I INTRODUCTION 9 hours

Definition of Management – Science or Art – Manager Vs Entrepreneur - types of managers - managerial roles and responsibilities – Evolution of Management –need and Importance of Organizational Behavior, Leadership styles – Theories – Leaders Vs Managers.

UNIT -II PLANNING & ORGANISING

9 hours

Nature and purpose of planning – planning process – types of planning – Planning premises objectives – hierarchy of objectives, Management By Objectives (MBO)— Decision making process. Nature and purpose of Formal and informal organization structure—types – Line and staff authority—delegation of authority—centralization and decentralization.

UNIT-III STAFFING AND COORDINATING

9 hours

Human Resource Planning, Job Analysis, Recruitment, Selection, Training and Development, Performance Management, Career planning. Coordination –Nature and purpose - Coordination at various levels: Top management, Middle management, Supervisory management and workers. Techniques for effective coordination

UNIT- IV DIRECTING AND CONTROLING

9 hours

Direction: Principles of direction – Need and Importance for directing, process of controlling – budgetary and non-budgetary control techniques – use of technology. Recent Trends in Management controlling.

UNIT-V GROUP BEHAVIOUR AND MOTIVATION

9 hours

Group Dynamics - How Groups Work, Stages of Group Development, Team building, Motivation - Theories of motivation Organizational Conflict - Causes - Types of Conflicts, Managing conflicts.

Total Hours: 45

Reference Books:

- 1. Stephen A. Robbins & David A. Decenzo& Mary Coulter, "Fundamentals of Management" 7th Edition, Pearson Education. 2011.
- 2. Robert Kreitner & Mamata Mohapatra, "Management", Biztantra, 2008.
- 3. Harold Koontz & Heinz Weihrich "Essentials of management" Tata Mc Graw Hill, 1998.
- 4. S.S. Khanka Organizational Behaviour S. Chand Ltd. 2006.
- 5. L.M.Prasad Organizational Behaviour. S. Chand Company -3^{rd} edition -2004.

COURSE	COLID	CTE NIA	ME.					Тх	/Lb	,					
CODE:	COUR	SE NA		CT PH	IASE –	ш			TLD/		\mathbf{L}	Γ/S.Lı	• P/	R	C
EBCS22L11					IASE –	11		1							
		iisite:Pr							Lb		0	0/0	12/	12	8
L : Lecture T						_	5			ch C: C	Credit	S			
T/L/ETL /IE:		/Lab/En	nbedded	d Theor	y and L	.ab/Inte	rnal Ev	'alua	tion						
OBJECTIVE															
The students															
	bjective									_			•	•	
	re a prol														
	ty mento														dge
	kills acq														
	ally and						nake ett	ncal	decis	sions ai	nd to	present	effec	tive	ly.
COURSE OU	JTCOM	TES (C	Os): Stu	adents v	vill be a	able to									
CO1		lain the													
CO2	To exp	ress pro	ficiency	in han	dling th	e techn	ologies								
CO3	To sup	port the	societa	l proble	ems										
CO4		marize				ith goo	d docun	nenta	tion						
CO5		date the								em					
Mapping of (•														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO) 8	PO9	PO	10 P	D11	PC)12
CO1	3	3	3	3	2	3	3	1	l	2	2		3	3	3
CO2	3	3	3	3	3	3	3	2	2	2	2		3		3
CO3	3	3	3	3	3	3	3	2		2	3		3		3
CO4	3	2	3	3	3	3	2		3	3	3		3		3
CO5	1	2	2	2	2	2	3	2		2	2		1		2
	1														
COs / PSOs		PSO1	ı		PSO2	ı		PS	5O3			P	SO4		
CO1		3			3				2				3		
CO2		3			3				3				3		
CO3		3			3				3				3		
CO4		2			2				2				2		
CO5		3			2				2				2		
3/2/1 Indicate	es Stren	gth Of	Correl	ation, 3	3 – High	1, 2- M	edium,	1- L	ow						
	T					ĺ									
			al												
			oci		ve		y	ıt	;;						
>	0)		g p		cti		naı	nen	jec						
gor	nce	50	an	ore	ele	ive	ildi	lod	Prc						
Category	Cie	ring	ies	ŭ	am	ecti	isci	om	al/						
Ŭ	Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project						
	asi	Enginee Science	ımı	ogr	Pr	en	nteı	kil	rac						
	<u>m</u>	En Sc	Hı	\Pr		$O_{ m I}$	I	S							
									✓						
		[

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C
EBCS22L11	PROJECT PHASE – II	Lb	0	0/0	12/12	8

OBJECTIVE:

Students are expected to carry out the following:

- (i) Implement the Design using suitable technologies.
- (ii) Generate the test cases.
- (iii) Demonstrate the solution with suitable user interface.
- (iv) Prepare a project report consolidating the phase-I and II activities.

DESCRIPTION:

To make the students to make use of the knowledge and skill developed during their four years of study and to apply them for making an innovative product/process for the development of society and industries.

Students are expected to do a Project work either in an Industry or at the University in the field of relevant Engineering /inter-disciplinary /multi-disciplinary area in a group of 3 or 4 students. The work to be carried out in Phase II should be continuation of Phase I. Each group will be allotted a guide based on the area of Project work. In case of industrial Project external guide has to be allotted from Industry. Inter disciplinary/multi-disciplinary project can be done with students of different disciplines as a group. Monthly reviews will be conducted during the semester to monitor the progress of the project by the project review committee. Students have to submit the Project thesis at the end of the semester and appear for the Project Viva-Voce examination conducted by the examiners duly appointed by the Controller of Examination. In case of industrial project certificate in proof has to be included in the report along with the bonofide certificate.

Total Hours:45

ELECTIVE-I

COURSE CODE: EBCS22E01	COURSE NAME: IMAGE PROCESSING	Ty/Lb/ ETL/IE	L	T/S.L r	P/R	С
	Prerequisite:Nil	Ty	3	0/0	0/0	3

L : Lecture T : Tutorial S.Lr : Supervised Learning P : Project R : Research C:

Credits Ty/Lb/ETL/IE: Theory/Lab/Embedded Theory and Lab/Internal

Evaluation

OBJECTIVES:

The students should be made to

- To Lean the image fundamentals and mathematical transforms necessary for image processing.
- To Learn the image enhancement and frequency domain of various transform
- To Learn image restoration procedures.
- To Learn the image segmentation and representation techniques

• To Lea	rn the	image c	ompres	sion pro	ocedures	;						
COURSE OUT	ГСОМ	ES (CC)s) : Stu	dents wi	ill be abl	e to						
GO1					C 11 1. 1	•	1		. 1 (7.1	`		
CO1							and its fu					
CO2	App	ly imag	e enhan	cement	and An	alyze ii	nages in	the frequ	aency do	omain (L	.3)	
CO3					chnique							
CO4							oundary r	egion of	an imag	ge (L3)		
CO5					of an i							
Mapping of C												
COs/POs	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	2	2	2	1	2	1	1	1	1	
CO2	3	3	3	3	3	1	2	1				1
CO3	3	3	3	3	3	2	2		1			
CO4	2	2	2	1	2	2	2		1			
CO5	3	3	2	2	2	1	2		1		1	1
COs / PSOs	PS	SO1		PS	O2		PS	O3		PS	SO4	
CO1		3			2			2			2	
CO2		3			3			1			3	
CO3		2			3			2			3	
CO4		2			3			1			2	
CO5		3			3			2			2	
3/2/1 Indicate	s Strei	ngth Of	Correl	ation, 3	3 – Higł	1, 2- M	edium, 1	- Low				
	nce		and social	re	elective	ve	plinary	onent Project				

Category	Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project		
Cate					√						

COURSE CODE	COURSENAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C
EBCS22E01	IMAGEPROCESSING	Ty	3	0/0	0/0	3

UNIT I Digital Image Fundamentals

9 Hrs

Digital image representation-Fundamental steps in image processing -Elements of digital image processing systems, Digital Image Fundamentals - Elements of visual perception-A simple image model -Sampling and quantization - Some basic relationship between pixels-Imaging geometry - 2D Transformations-DFT, DCT, KLT and SVD.

UNIT II IMAGE ENHANCEMENT

9 Hrs

Background -Enhancement by point Processing -Enhancement in the frequency domains - Spatial Domain: Gray level transformations: Histogram Processing, Spatial filtering, Image Smoothing, Image Sharpening. - Color image processing. Introduction to Fourier Transform—Smoothing and Sharpening frequency domain filters — Ideal, Butterworth and Gaussian filters, Homomorphic filtering, Color image enhancement.

UNIT III IMAGE RESTORATION

9 Hrs

Image Restoration: -Algebraic approach to restoration- degradation model, Properties, Noise models -Mean Filters - Order Statistics - Adaptive filters - Band reject Filters - Band pass Filters

- Notch Filters - Optimum Notch Filtering - Inverse Filtering - Wiener - Interactive Restoration.

UNIT IV IMAGE SEGMENTATION

9 Hrs

Images Segmentation: Detection of discontinuous, Edge linking and boundary detection - Thresholding - Region - Oriented segmentation — The use of motion in segmentation. Morphological image processing: Preliminaries, dilation, erosion, open and closing, hit or miss transformation, basic morphologic algorithms.

UNIT V Image Compression & Object Recognition

9 Hrs

Fundamentals -image Compression models -Elements of information Theory - Error-free Compression - Lossy Compression - Image Compression standards. Object Recognition: Patterns and patterns classes, recognition based on decision—theoretic methods, matching, optimum statistical classifiers, neural networks, structural methods — matching shape numbers, string matching

Total Hours: 45

TEXT BOOKS:

Digital Image Processing, RafealC.Gonzalez, Richard E.Woods, Second Edition, Pearson Education/PHI.

- 1. Image Processing, Analysis, and Machine Vision, Milan Sonka, Vaclav Hlavac and Roger Boyle, Second Edition, Thomson Learning.
- 2.Introduction to Digital Image Processing with Matlab, Alasdair McAndrew, Thomson Course Technology
- 3. Computer Vision and Image Processing, Adrian Low, Second Edition, B.S.Publications
- 4. Digital Image Processing using Matlab, RafealC.Gonzalez, Richard E.Woods, Steven L. Eddins, Pearson Education.

COURSE CODE: EBCS22E0			aphical	Inform	nation S	Systems			Lb/ L/IE	2	L	T/S.	L P	/R	C
2		uisite: 1							Ty		3	0/0	0.	/0	3
L : Lecture				-		_	•			arch C:	Cred	its			
T/L/ETL /II		y/Lab/I	Embedd	ed The	ory and	Lab/Inte	ernal Ev	alua	tion						
OBJECTIVI															
The student					1	. ,	1.			CIG	1.1				
						e, interp									
		new geo	coding	technic	que ana	apply th	ne Iearn	t GIS	moo	deling i	or a r	eai t	time cas	se	
course (MFS (CO_{c} :	Studente	will be	abla to									
COURSE C		•													
CO2				S conce is GIS 1											
						` '	1: 4:	(I 2)	`						
CO3 CO4						time app	ncation	1 (L3 ₎)						
CO ₄		•		s GIS to		ue for r	ool timo		otuc	lv(I 2)					
Mapping of									Stuc	1y(L3)					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO	Q	PO9	PO	10	PO11	P()12
CO ₃ /1 O ₃	2	2	2	1	2	3	3	10	0	2	2	LU	1011	1	/12
CO2	2	2	2	2	2	2	2			2	1				
CO3	3	2	3	3	2	3	2	2	2	1	2				1
CO4	3	1	2	3	3	2	2			2	1		1	_	1
CO5	3	3	3	2	2	2	1	2	2	2	1		1		1
COs /PSOs		PSO1			PSO2			PS	SO3			I	PSO4		
CO1		1			2				1				2		
CO2		2			2				1				1		
CO3		2			1				1				2		
CO4		2			1				2				1		
CO5		2			2				2				2		
H/M/L indi	cates S	trength		relatio	n H-1	High, M	- Medi	um,	L-L)W					
Category	Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project						
					✓										

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C
EBCS22E02	GEOGRAPHICAL INFORMATION SYTEMS	Ту	3	0/0	0/0	3

OBJECTIVES:

- The students will be able to design, explore, interpolate and analyze GIS models
- To create a new geo coding technique and apply the learnt GIS modeling for a real time case study.

UNIT I BASIC CONCEPTS

9 Hrs

Introduction - History of GIS - Components of a GIS - Hardware, Software, Data, People, Methods - Proprietary and open source Software - Types of data - Spatial, Attribute data- types of attributes - Coordinate Systems - Vector Data Model - Raster Data Model.

UNIT II DATA ACQUISTION & MANIPULATION

9 Hrs

GIS Data Acquisition - Geometric Transformation - Spatial Data Editing - Attribute Data Input and Management - Data Display and Cartography.

UNIT III DATA ANALYSIS

9 Hrs

Data Exploration - Vector Data Analysis tools- Raster Data Analysis tools - Terrain Mapping and Analysis - Viewsheds and Watersheds.

UNIT IV INTERPOLATION & MODELLING

9 Hrs

Spatial Interpolation - Geocoding and Dynamic Segmentation - Path Analysis and Network Applications - GIS Model and Modelling

UNIT V APPLICATIONS

9 Hrs

GIS Applicant - Natural Resource Management - Engineering - Navigation - Vehicle tracking and fleet management - Marketing and Business applications - Case studies.

Total Hours: 45

TEXT BOOK:

1. Kang-tsung Chang (2015), *Introduction to Geographic Information Systems*, (8th ed.), Mcgrawhill ISBN 0078095131, 9780078095139

- 1. Prithvish Nag And Smita Sengupta, Introduction To Geographical Information Systems, Concept Publishing Company, 2007, ISBN 8180694399, 9788180694394
- 2. Paul Longley, Geographical information systems, 2/e, Wiley, 1999, Digitised 2007, ISBN 0471321826, 9780471321828

COURSE	COU	RSE NA	ME:				Ty/Lb	./				
CODE:		DATA	ABASE	E TUN	ING		ETL/I		L	T/S.Lr	P/R	C
EBCS22E03	Prerec	quisite: D	BMS					Ту	3	0/0	0/0	3
L : Lecture T :	Tutori	al S.Lı	: Supe	rvised	Learnii	ng P:	Project	R : Res	earch C	: Credits		
Ty/Lb/ETL/IE		ry/Lab/E	Embedd	led The	ory and	d Lab/I	nternal	Evaluat	ion			
OBJECTIVES												
The students sh												
										lications		
	-	se studie					troubles	shoot the	e data b	ases		
		ritical per										
COURSE OU	TCOM	AES (CO)s): Sti	udents v	will be a	ble to						
CO1	Reme	mber the	conce	ots of I	DBMS[L1]						
CO2	Under	stand the	e funda	mental	s of Tu	ning. []	L2]					
CO3	Analy	ze the da	atabase	s for di	fferent	Applic	ations[I	[_4]				
CO4	Apply	the Tro	ublesho	ot idea	s in the	e data b	ases [L	3]				
CO5	Devel	op Appli	cations	and C	ase Stu	dies in	data ba	ses. [L6	<u>[</u>			
Mapping of C	ourse	Outcom	es with	Progr	am Ou	ıtcome	s (POs))				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	2	2	1	1	2	2	2	1
CO2	3	3	3	3	2	3	2	2	3	3	3	3
CO3	3	3	2	3	2	3	3	2	3	3	3	2
CO4	2	3	3	2	1	2	2	3	2	3	3	2
CO5	3	3	3	3	3	3	3	3	3	3	3	3
COs / PSOs		PSO1			PSO2			PSO3			PSO4	
CO1		2			3						2	
					J			3				
CO2					3			3			2	
		1			3			3				
CO2 CO3 CO4											2	
CO3		1 2			3			3			2 3	
CO3 CO4 CO5	s Stren	1 2 2 3	Correla	ation, 3	3 3 2 3	h, 2- M	Iedium	3 3 2 3	v		2 3 1	
CO3 CO4	s Stren	1 2 2 3	Correla	ation, 3	3 3 2 3	h, 2- M	l edium	3 3 2 3	V		2 3 1	
CO3 CO4 CO5	s Stren	1 2 2 3		ation, 3	3 3 2 3	h, 2- M	I edium	3 3 2 3	v		2 3 1	
CO3 CO4 CO5	s Stren	1 2 2 3 ngth Of (ation, 3	3 3 2 3 3 - Hig	h, 2- M	l edium	3 3 2 3	v		2 3 1	
CO3 CO4 CO5	s Stren	1 2 2 3 ngth Of (ation, 3	3 3 2 3 3 - Hig	h, 2- M		3 2 3 , 1- Lov			2 3 1	
CO3 CO4 CO5 3/2/1 Indicates		1 2 2 3 ngth Of (3 3 2 3 3 - Hig			3 2 3 , 1- Lov			2 3 1	
CO3 CO4 CO5 3/2/1 Indicates		1 2 2 3 ngth Of (3 3 2 3 3 - Hig			3 2 3 , 1- Lov			2 3 1	
CO3 CO4 CO5 3/2/1 Indicates		1 2 2 3 ngth Of (ties and social		3 3 2 3 3 - Hig			3 2 3 , 1- Lov			2 3 1	
CO3 CO4 CO5		1 2 2 3 ngth Of (ties and social		3 3 2 3 3 - Hig			3 2 3 , 1- Lov			2 3 1	
CO3 CO4 CO5 3/2/1 Indicates	Basic Science	1 2 2 3 ngth Of (Humanities and social Science	Core	3 3 2 3	h, 2- M Oben Elective	Inter Disciplinary and maip	3 3 2 3	Practical /Project		2 3 1	

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	С
EBCS22E03	DATABASE TUNING	Ty	3	0/0	0/0	3

UNIT I Fundamentals of Tuning

9 Hrs

Review of Relational Databases – Relational Algebra - Locking and Concurrency Control – Correctness Consideration – Lock Tuning – Logging and the Recovery Subsystem – Principles of Recovery – Tuning the Recovery Subsystem – Operating Systems Considerations – Hardware Tuning

UNIT II Indexing and Hashing

9 Hrs

Types of Queries – Data Structures – B tree – B+ Tree - Hash Structures – Bit Map Indexes – Clustering Indexes – Non Clustering Indexes – Composite Indexes – Hot Tables – Comparison of Indexing and Hashing Techniques

UNIT III Query Optimization

9 Hrs

Techniques - Tuning Relational Systems - Normalization - Tuning De-normalization - Clustering Two Tables - Aggregate Maintenance - Record Layout - Query Tuning - Triggers - Client Server Mechanisms - Objects, Application Tools and Performance - Tuning the Application Interface - Bulk Loading Data - Accessing Multiple Databases

UNIT IV Troubleshooting

9 Hrs

Query Plan Explainers – Performance Monitors – Event Monitors – Finding —Suspicious Queries – Analyzing a Query 's Access Plan – Profiling a Query Execution – DBMS Subsystems

UNIT V Interface and Connectivity Tuning

9Hrs

Objects, Application Tools and Performance –Tuning the Application Interface – Bulk Loading Data – Accessing Multiple Databases – ODBC – JDBC Tuning — Case Studies: Tuning E Commerce Application—Data Warehouse Tuning – Transaction Chopping

TOTAL HOURS: 45

TEXT BOOKS:

- 1. Dennis Shasha and Philippe Bonnet (2005) Database Tuning, Principles, Experiments, and Troubleshooting Techniques, Elsevier
- 2. Thomas Connoly and CarlolynBegg (2009) Database Systems, A Practical Approach to Design, Implementation and Management, (4th ed.) Pearson Education

REFERENCES:

1. Peter Gulutzan and Trudy Pelzer, —SQL Performance Tuning, Addison-Wesley, First Edition, 2002.

COURSE CODE	COURSE NAME:	Ty/Lb/	L	T/S.L	P/R	$ \mathbf{c} $
EBCS22E04	COMPONENT BASED TECHNOLOGY	ETL/IE		r		
	Prerequisite: Internet Programming	Ту	3	0	0	3

L: Lecture T: Tutorial S.Lr: Supervised Learning P: Project R: Research C: Credits

Ty/Lb/ETL/IE: Theory/Lab/Embedded Theory and Lab/Internal Evaluation

OBJECTIVES:

The students should be made to

- 1. Study in depth JAVA, CORBA and .Net Components
- 2. Implement Fundamental properties of components, technology and architecture and middleware.
- 3. Understand Component Frameworks and Development.

3. Under	stand Component Frameworks and Development.													
COURSE OU	UTCON	MES (C	Os): St	udents v	will be a	ble to								
CO1	Under	stand th	ne funda	mental	s of soft	ware co	ompone	nts and	heir arch	itecture ((L1)			
CO2	Devel	op a Jav	a Threa	nd and C	Create a	bean fo	or an app	olication	(L5)					
CO3	Devel	op and l	Implem	ent CO	RBA Ba	ased Te	chnolog	y Comp	onent (L	5)				
CO4	Apply	Apply .NET Based Technology Component for s/w development (L3)												
CO5	Analy	analyze Component Based connectors, development and testing Tools (L4)												
		se Outcomes with Program Outcomes (POs)												
COs/POs	PO1													
CO1	3	2	1	1	1	2	1	2	2	1	1	1		
CO2	3	2	3	1	2	2	1	2	2	3	3			
CO3	3	2	3	2	3	1	1	2	2	3	3			
CO4	3	2	1	2	3	1		2	2	3	2			
CO5	2	3	1	2	3	1		2	1	2	2			
COs / PSOs		PSO1			PSO2		PSO3				PSO4	ı		
CO1		2			2			1			1			
CO2		3			3			1			2			
CO3		3			3			2			3			
CO4		2			3			2			3			
CO5		1			3			2			3			
3/2/1 Indicate	es Strer	ngth Of	Correl	ation, 3	3 – Higl	h, 2- M	edium,	1- Low						
Category	Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project					
					✓									

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C
EBCS22E04	COMPONENT BASED TECHNOLOGY	Ty	3	0/0	0/0	3

UNIT I INTRODUCTION 9Hrs

Software Components – objects – fundamental properties of Component technology – modules – interfaces – callbacks – directory services – component architecture – components and middleware

UNIT II JAVA BASED COMPONENT TECHNOLOGIES 9Hrs

Threads – Java Beans – Events and connections – properties – introspection – JAR files – reflection – object serialization – Enterprise Java Beans – Distributed Object models – RMI and RMI-IIOP

UNIT III CORBA COMPONENT TECHNOLOGIES 9Hrs

Java and CORBA – Interface Definition language – Object Request Broker – system object model – portable object adapter – CORBA services – CORBA component model – containers – application server – model driven architecture

UNIT IV NET BASED COMPONENT TECHNOLOGIES 9Hrs

COM – Distributed COM – object reuse – interfaces and versioning – dispatch interfaces – connectable objects – OLE containers and servers – Active X controls – .NET components – assemblies – appdomains – contexts – reflection – remoting

UNIT V COMPONENT FRAMEWORKS AND DEVELOPMENT 9Hrs

Connectors – contexts – EJB containers – CLR contexts and channels – Black Box {PAGE } component framework – directory objects – cross-development environment – component-oriented programming – Component design and implementation tools – testing tools – assembly tools.

Total Hours:45

TEXT BOOK

1. Clemens||Szyperski,||,Component||Software: Beyond Object-Oriented Programming',||Pearson||Education||publishers,||2013

REFERENCES

- 1. Ed|Roman,||,Mastering||Enterprise||Java||Beans',||John||Wiley||&||Sons||Inc.,||2012.
- 2. Mowbray, ||, Inside || CORBA', || Pearson || Education, || 2013.
- 3. Freeze, ||, Visual || Basic || Development || Guide || for || COM || & || COM + ', || BPB || Publication, || 2011. 4. Hortsamann, || Cornell, ||, CORE || JAVA Vol-II' ||, || Sun || Press, || 2012.

COURSE	COURSE NAME:	Ty/Lb/	_		D./D	C
CODE:	E-COMMERCE	ETL/IE	L	T/S.Lr	P/R	С
EBCS22E05	Prerequisite: Nil	Ту	3	0/0	0/0	3

L: Lecture T: Tutorial S.Lr: Supervised Learning P: Project R: Research C: Credits

Ty/Lb/ETL/IE: Theory/Lab/Embedded Theory and Lab/Internal Evaluation

OBJECTIVES:

The students should be made to

- Understand the nature of e-Commerce
- Recognize the business impact and potential of e-Commerce
- To Learn the E-Commerce Platform and its concepts
- To Understand the Technology, infrastructure and Business in E-Commerce
- To Understand the Security and Challenges in E-Commerce
- To Build an Own E-Commerce using Open Source Frameworks

COURSE O	UTCON	MES (COs):	Studen	ts will be	e able to)											
CO1										rategy (L2								
CO2	Able	to imp	lemen	t infras	structure	e for E-	commer	ce and v	arious se	ervices (L5	5)							
CO3	Desig	gn and	apply	variou	s protoc	cols for	wireless	devices	for M-c	ommerce	(L5)							
CO4							bile con											
CO5	Desig	gn and	develo	p an E	-Comm	nerce m	odel for	enterpri	se (L5)									
Mapping of																		
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12						
CO1	2	2	2	2	2	2	1	1			1							
CO2	3	2	2	2	3	2	2	1	1		1							
CO3	3	3	2	2	3	2	2	2	1	1	1 1							
CO4	3	3	2	3	2	2	2		1									
CO5	2	3	2	3	3	2	3	2	1	1	1 1 1							
COs /PSOs	PSO1			PSO	2		PSO3				PSO4							
CO1		2			1			1			1							
CO2		2			2		2				2							
CO3		2			1		1				1							
CO4	3		3		CO4		2			2			2					
CO5		3			3			3			3							
3/2/1 Indica	tes Stre	ength (Of Cor	relati	on, 3 –	High, 2	2- Mediu	ım, 1- L	ow									
Category	Basic Science	Engineering	Humanities and social	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project									
Cat					✓													

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S. Lr	P/R	C
EBCS22E05	E-COMMERCE	Ту	3	0/0	0/0	3

UNIT I Introduction

9 Hrs

History of E-Commerce -E-Commerce Vs E-Business-Emergence of the Internet- Advantages-Disadvantages- Business model- E -Business Models based on the relationship of Transaction Parties- E -Business Models based on the relationship of Transaction Types- Technologies of World Wide Web- Internet Client Server Applications- Networks and Internets-Software Agents-Internet Standards and Specification-Internet Service Provider-Markup Language and the web-JavaScript-XML-Intranets and Extranets.

UNIT II E-Marketing

9 Hrs

Identifying Web Presence Goals- The Browsing Behaviour Model-Online Marketing-E-Advertising-Internet Marketing Trends-Targets Markets-E-Branding-Marketing Strategies E-Security: Security on the Internet-E- Business Risk Management Issues-E-Payment Systems: Digital Token based e-payment System-Classification of New Payment System-Electronic Cash-Risk and E-Payment System-Designing E-paymentSystem- Digital Signature.

UNIT III E-Customer Relationship Management

9 Hrs

CRM-ECRM Solutions- ECRM Toolkit-Typical Business Touch point. E-Supply Chain Management-Supply Chain Management for Various Industries- E-Strategy and Knowledge management.

UNIT IV Mobile Commerce

9 Hrs

Information System for Mobile Commerce-Mobile Payments-Cellular Networks-Different Generations in wireless Communication- Technologies for mobile Commerce-WAP Programming Model. Portals for E-Business: Portals- Requirements of Intelligent Websites, Ethical, Social, Political issues in E-Commerce.

UNIT V Applications

9 Hrs

Plan your Business and create a web Site with wordpress.B2B ,B2C models of E-commerce.

Business model of any E-commerce website Mini project develop E-Commerce projects

Total Hours: 45

TEXT BOOK:

- 1. P.T. Joseph, S.J. (2015), E-Commerce Indian Perspective Fifth Edition, PHI Learning
- 2. Kenneth C.Laudon, Carol Guercio Traver-E-Commerce, Pearson, 10th Edition, 2016

- 1. Zheng Qin(2009), Introduction to E-Commerce, Springer.
- 2. MamtaBhusry, E-Commerce, Laxmi Publications PVT Ltd.

COURSE CODE EBCS22E06	l l	IRSE N OMPU'		RAPH	ICS AN	ND MU	LTIME	EDIA	Ty/Lb		L	T/S.Lr	P/R	C
	Prer	equisite	: Nil						Ty	7	3	0/0	0/0	3
L: Lecture T:	Tutor	ial S.I	r : Sup	ervised	Learnin	ng P:F	Project	R : Res	earch C:	Cred	lits			
Ty/Lb/ETL/IE	: Theo	ory/Lab	/Embed	ded The	eory and	d Lab/I	nternal	Evalua	ition					
OBJECTIVE	S:													
The students sl	hould l	be made	e to											
							_	•	and their	trans	sfori	mations.		
							d their t	ransfor	nations.					
		and illur			olor mod	dels								
		create a												
		ne fami												
COURSE OU									-4t 1 ·			1 1'00		
					ut primi	itives, ti	ranstorr	n geom	etrical st	ructu	ires a	and differ	rent	
		ng, colo			ronefo	notions	vioni	na ond a	lipping t	oohn	iana	м П 21		
								-			_		D	
CO3	Apply	the 3L ormatio	object	s conce	pts and	project:	ions and	ı solvin	g numer	ical p	orob.	lems on 3	טט	
									and diff	ront	filo	formats i	nyoly/	od in
		nedia[L		iecture,	compre	2881011, 0	Jecomp	ression	and unit	erem	me	101111ats 1	1100100	eu III
		n and a		hasic sh	anes iis	ing Ble	nder []	41						
Mapping of C														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P	D10	PO11	PO1	2
CO1	3	3	1	1	2	1	1	1	1	-	1			
CO2	3	3	2	3	2	1	1	1	1		1			
CO3	3	3	2	3	2	1	1	1	1		1			
CO4	2	2	3	2	2	1	1	1	1		1			
CO5	2	2	3	2	2	1	1	1	1		1			
COs / PSOs		PSO1			PSO ₂			PSO	3			PSC)4	
CO1		2			1			1				1		
CO2		2			2			1				1		
CO3		2			1			1				1		
CO4		3			1			1				1		
CO5	G.	3	2.0		2		1.	2				1		
3/2/1 Indicate	s Strei	ngth Oi	Corre	lation, .	3 – H1 <u>g</u>	h, 2- M		, 1- Lov	7			1		
Category	Basic Science	Engineering Science	Humanities and social Science	Program	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project					
					√	<u> </u>								

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	С
EBCS22E06	COMPUTER GRAPHICS AND MULTIMEDIA	Ту	3	0/0	0/0	3

UNIT I BASICS OF COMPUTER GRAPHICS AND COLOUR MODELS 9Hrs

Output primitives-Line drawing algorithms-Loading the frame buffer-Line function-Circle generation algorithms – Ellipse generation algorithms- Attributes of output primitives-Basic illumination models — halftone patterns and dithering techniques; Properties of light — Standard primaries and chromaticity diagram; Intuitive color concepts — RGB colour model — YIQ colour model — CMY colour model - colour selection

UNIT II TWO DIMENSIONAL GRAPHICS

9 Hrs

Two dimensional transformations- Matrix representations and homogeneous coordinates - Composite transformations – two dimensional viewing - Window to view port transformation - Clipping operations - Point clipping - Line clipping (Cohen - Sutherland line Clipping) - Polygon clipping(Sutherland - Hodgeman algorithm) – Numerical problem solving and programming on two dimensional transformation , viewing and clipping

UNIT III THREE DIMENSIONAL GRAPHICS

9 Hrs

Three dimensional concepts - Three dimensional object representation - Three Dimensional Transformations - Visible surface detection methods (Back Face Detection - Depth Buffer Method - Scan Line Method) - Numerical problem solving and programming on three dimensional transformations

UNIT IV MULTIMEDIABASISANDTOOLS

9 Hrs

Multimedia basics – Multimedia applications – Multimedia system architecture – Evolving technologies for multimedia – Defining objects for multimedia systems – Multimedia data interface standards – Multimedia databases. Compression and decompression – Data and file format standards – Multimedia I/O technologies – Digital voice and audio – Video image and animation – Full motion video – Storage and retrieval technologies.

UNIT V HYPERMEDIA

9 Hrs

Multimedia authoring and user interface — Hypermedia messaging -Mobile messaging – Hypermedia message component – Creating hypermedia message – Integrated multimedia message standards – Integrated document management – Distributed multimedia systems. CASE STUDY: BLENDER GRAPHICS Blender Fundamentals — Drawing Basic Shapes — Modeling — Shading & Textures

Total Hours: 45

TEXT BOOKS:

- 1. 1. Donald, D. Hearn. Pauline, Baker, M. Warren, Carithers. (2010) Computer graphics with Open GL, (4thed.)
- 2. Computer Graphics (Special Indian Edition) (Schaum's Outline Series) 2nd Edition, 2006 (English, Paperback, Xiang, Plastock, Avadhani), McGraw Hill Education (India) Private Limited
- **3**. K.R. Rao, Zoran S. Bojkovic and Dragorad A. Milovanovic, "Multimedia Communication Systems: Techniques, Standards, and Networks", Pearson Prentice Hall, 2014, ISBN-978- 81203-2145-8 2

- 1. Peter Shirley, Michael Ashikhmin, Michael Gleicher, Stephen R Marschner, Erik Reinhard, Kelvin Sung, and AK Peters, Fundamental of Computer Graphics, CRC Press, 2010.
- 2. John F. Hughes, Andries Van Dam, Morgan Mc Guire, David F. Sklar, James D. Foley, Steven K. Feiner and Kurt Akeley, "Computer Graphics: Principles and Practice", 3rd Edition, Addison-Wesley Professional, 2013

COURSE CODE EBCS22E07	COUR	RSE NAI WIREI		ND MO	BILE NI	ETWOR	RKING		Fy/Lb/ ETL/IE	L	T/S	.Lr	P/R	С
	Prereq	uisite: N	il 💮						Ту	3	0/	0	0/0	3
L : Lecture T										edits				
Ty/Lb/ETL/IE		ry/Lab/	Embedo	ded The	ory and	Lab/Int	ernal E	valuation	1					
OBJECTIVES The students sh		made to												
The students si				ommuni	cation Sy	stems								
					rk issues									
COURSE OUT	ГСОМЕ	ES (COs): Studei	nts will	be able t	to								
CO1	To und	lerstand	about wi	ireless co	ommunic	ation[L2	2]							
CO2					hitecture			m[L4]						
CO3					s of wire									
CO4		•			twork iss									
CO5					applicat									
Mapping of Co								DOS	DO0		010	DO1	1 D	012
COs/POs CO1	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P	010	PO1	1 P	012
CO2	2	2	1	2	2	3	2	2	1		2	2		2
CO2	2	1	1	3	2	2	2	1	3		1	2		2
CO4	1	2 2	2	1	2	3	1	1	2 2		2	2		2
CO5	2	2	1	1	2	2	3	1	1		1	2		2
	2	2	2	1	1	2	2	2	1		3	1		2
COs / PSOs	_	PSO1			PSO2		_	PSO				PSC)4	
CO1		2			2			1				2		
CO2		3			2			2				2		
CO3		2			2			2				1		
CO4		3			2			2				2		
CO5		2			1			2				2		
3/2/1 Indicates	Strengt	th Of Co	orrelatio	n, 3 – H	ligh, 2- N	Aedium,	1- Low			•				
Category	Basic Science	Engineering Science	Humanities and social	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project					

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C
EBCS22E07	WIRELESS AND MOBILE NETWORKING	Ту	3	0/0	0/0	3

UNIT ICOMMUNICATION FUNDAMENTALS

9 Hrs

Introduction - Wireless Transmission - Frequencies for Radio Transmission - Signals - Signal propagation - Multiplexing, Modulation - Bandwidth-Spread spectrum - Cellular systems.

UNIT II MAC AND COMMUNICATION SYSTEMS

9 Hrs

Functions of MAC - Interference -FDMA-TDMA-CDMA and OFDM. Telecommunication systems -GSM-UMTS and IMT-2000, Satellite systems - Broadcast systems - Data Digital Audio Broadcasting - Digital Video Broadcasting.

UNIT III WIRELESS STANDARDS

9 Hrs Wireless

LAN - Infrared vs. Radio Transmission - Infra structure and ad hoc Networks, 802.11, 802.15, MANET - HIPERLAN - Piconet. Wireless ATM - Services - Radio Access Layer - 3GPP,3G, 4G and 5G standards.

UNIT IV MOBILE NETWORK ISSUES

9 Hrs

Mobile network layer - Mobile IP - DHCP - Mobile transport layer - Traditional TCP - Indirect TCP - Snooping TCP, Mobile TCP - Selective Retransmission - Transaction Oriented TCP, Routing Algorithm and protocols

UNIT V MOBILE APPLICATIONS

9 Hrs

Support for Mobility - File systems - Consistency - World wide web - Hyper Text Transfer Protocol - Hypertext markup language -Next generation- Wireless Application Protocol. Over view of smart phones

Total Hours 45

TEXT BOOKS:

- 1. Jochen Schiller, (2008) Mobile Communications (2nd ed.), Pearson Education
- 2. Blake (2002) Wireless Communication Technology, Thomson Learning

REFERENCES:

- 1. Theodore S.Rappaport (2010) Wireless Communication: Principles and practice, Prentice Hall.
- 2. William Stallings, "Wireless Communications and Networks", PHI/Pearson Educatio

COURSE CODE EBCS22E08	COUF	RSE NA		G NET	WORKS	8			Ty/Lb/ ETL/IE	L	T/S.	.Lr	P/R	C			
	Prerec	uisite:N	Vil						Ty	3	0/	0	0/0	3			
L : Lecture				Super	vised L	earnin	g P: I	Project	R : Resea	rch	C: C1	redits	S				
Ty/Lb/ETL/	T : T	heory/	Lab/Er	nbedd	ed Theo	ry and	Lab/I	nterna	l Evaluatio	n							
OBJECTIVE																	
The students s					_												
	•				tworks w		_		•								
COURSE OU	TCOM						nmunica	ations 11	nfrastructure								
CO1	To un	derstand	l about :	5G Arch	itecture[L2]											
CO2	To kn	ow abou	it the m	achine t	ype comi	municati	ion[L1]										
CO3	To un	derstand	l comm	unicatio	n takes p	lace in 5	G[L2]										
CO4		alyze th															
CO5					dynamic	configu	ration[L	<u>.5]</u>									
Mapping of C	Course (Outcom	es with	Progra	ram Outcomes (POs)												
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P	PO10 PO11 PO1						
CO1	2	1	3	1	1	2	1	2	1		2 2 2						
CO2	2	2	2	1	1	2	2	2	2		2 1						
CO3	3	1	1	2	1	2	2	1	2		2	1		1			
CO4	2	2	2	1	2	1	1	2	2		3	2		2			
CO5	3	2	2	1	2	2	1	2	2		1	2		2			
COs / PSOs		PSO1			PSO2			PS	03		[PSC)4				
CO1		2			2				2			2					
CO2		3			2				2								
CO3		2			3				2			1					
CO4		2			2				2			3					
CO5		2			2				<u>-</u> 1			2					
3/2/1 Indicate	s Stren		Correla	tion, 3		2- Medi	um, 1- l		<u> </u>								
		g		, -	89		,										
Category	Basic Science	Engineering Saisses	Humanities and social	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project								
					√												

ELECTIVE-II

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S. Lr	P/R	С
EBCS22E08	5G Networks	Ty	3	0/0	0/0	3

Unit I: 9 Hrs

5G Architecture, Modelingrequirementsandscenarios, Channel model requirements, Propagation scenarios, NFV and SDN, Basics about RAN architecture, High-level requirements for the 5G architecture, Functional architecture and 5G flexibility, Enhanced Multi-RAT coordination features, 5G deployment.

Unit II: 9 Hrs

Machine-type communications- MTC requirements, Fundamental techniques for MTC , Data and control for short packets , Non-orthogonal access protocols , Massive MTC , Design principles , Technology components , Ultrareliable low-latency MTC , Design principles , Technology components.

Unit III: 9 Hrs

Device-to-device (D2D) communications- D2D standardization: $4G\ LTE\ D2D$, D2D in 5G: research challenges, Radio resource management for mobile broadband D2D, RRM techniques and concepts for mobile broadband D2D, RRM and system design for D2D, Multi-hop D2D communications for proximity and emergency services, Multi-operator D2D communication.

Unit IV: 9 Hrs

Millimeter wave communications- Channel propagation, Hardware technologies for mmW systems, Architecture and mobility, Beam forming, Physical layer techniques. 5G radio-access technologies - Access design principles for multiuser communications, Multi-carrier with filtering: a new waveform, Non-orthogonal schemes for efficient multiple access, Radio access for dense deployments, Radio access for V2X communication, Radio access for massive machine-type communication.

Unit V: 9 Hrs

Massive multiple-input multiple-output (MIMO) systems - Coordinated multi-point transmission in 5G - Relaying and wireless network coding - Interference management, mobility management, and dynamic reconfiguration.

Total Hours 45

Text Books:- 1. 5G Mobile and Wireless Communications Technology ,AfifOsseiran ,Ericsson , Josef. Monserrt ,UniversitatPolitècnica de València , Patrick Marsch , Nokia , Second Edition 2011.

2. 5GNR: "TheNextGenerationWirelessAccessTechnology", ErikDahlman,StefanParkvall,JohanSköld, Elsevier, FirstEdition,2016.

References:-

1. Fundamentalsof5GMobileNetworks ,JonathanRodriguez , Wiley , First edition 201

COURSE CODE EBCS22E09	COURSE	NAME:)RAGE	MANA	GEME	NT	Ty/Lb		L	T/		P/R	C
EBCS22E09	Prerequis	ite:Nil						Ty	7	3	0/	0 (0/0	3
L : Lecture T : T Ty/Lb/ETL/IE :						ect R:I	Research	n C: Cred	lits					<u>-1</u>
OBJECTIVES:				1) 4114 2										
The students she		e to												
• Unders	stand the bas	ic compo	onents o	f Storage	e System	Enviro	nment.							
	stand the Sto					es and C	ompone	ents.						
	ne emerging		-	_										
	the architect					-	_	•						
COURSE OUT	stand the var					ments in	data ce	mer envi	ronnient	S				
CO1						center [T 11							
		Determine storage requirements for a data center. [L1] Evaluate the performance of storage subsystems. [L5]												
CO2		Evaluate the performance of storage subsystems. [L5]												
CO3		Design storage solutions based on application needs. [L6]												
CO4		Define backup, recovery, disaster recovery, business continuity, and replication. [L1] Understand logical and physical components of a storage infrastructural [2]												
CO5	Understand logical and physical components of a storage infrastructure[L2] urse Outcomes with Program Outcomes (POs)													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	10	PO11	PO	111
COS/FOS		3	3		-	2	-	+	2	3	-		1	
CO2	3	2	3	3	1	1	2	1	2	3		2		<u>3</u>
CO3	3	3	3	3	2	1	1	2	2	3		3		3
CO4	3	3	3	2	2	2	2	2	2	2		2		3
CO5	3	2	3	2	1	2	1	1	2	2		2		3
COs / PSOs		PSO1			PSO2	_		PSO		 		PSO ₄	1	
CO1		3			3			3				3		
CO2		3			3			2				3		
CO3		3			3			2				3		
CO4		3			3			2				3		
CO5		3			2			2				3		
3/2/1 Indicates	Strength Of	Correla	ation, 3	– High,	2- Medi	um, 1- l	Low							
		o	ial Science		o									
Category	Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project					
		Щ	Ηι	1		O	I	91	I				+	

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C
EBCS22E09	INFORMATION STORAGE MANAGEMENT	Ту	3	0/0	0/0	3

UNIT I INTRODUCTION TO STORAGE SYSTEMS

9 Hrs

Information Storage - Evolution of Storage Technology and Architecture - Data Centre - Infrastructure - ILM - Storage System Environment - Components of Host RAID: Implementation, RAID Array Components-RAID levels & comparison - RAID Impact On Disk Performance- ISS- Components, Intelligent Storage Array.

UNIT II STORAGE NETWORKING TECHNOLOGIES

9 Hrs

Direct-Attached Storage- Types of DAS, DAS Benefits and Limitations, Disk Drive Interfaces- Introduction to Parallel SCSI, SCSI Command Model-Storage Area Networks- Fiber Channel, SAN Evolution, SAN Components, Fiber Channel Connectivity, Fiber Channel Ports, Fiber Channel Architecture, Zoning, Fiber Channel Login Types, Fiber Channel Topologies-NAS-Benefits, NAS File me /Components and Operations, Implementations, File Sharing Protocols.

UNIT III VIRTUALIZATION AND ADVANCED STORAGE NETWORKING 9 Hrs

IP SAN: iSCSI, FCIP. Content-Addressed Storage: Fixed Content and Archives, Types of Archives, Features and Benefits of CAS, CAS Architecture, Object Storage and Retrieval in CAS, CAS Examples. Storage Virtualization: Forms of Virtualization, NIA Storage Virtualization Taxonomy, Storage Virtualization Configurations, Storage Virtualization Challenges, Types of Storage Virtualization.

UNIT IV BUSINESS CONTINUITY AND STORAGE SECURITY

9 Hrs

Information availability – BC Planning Life Cycle, failure analysis, Business Impact Analysis – Backup & Recovery –Purpose and Considerations-Restoration operations-Backup Topologies and Technologies.

UNIT V LOCAL AND REMOTE REPLICATION

9 Hrs

Local Replication: Source and Target, Uses, Data Consistency, Local Replication Technologies, Restore and Restart Considerations, Creating Multiple Replicas, Management Interface.

Remote Replication: Modes of Remote Replication and its Technologies, Network Infrastructure.

Total Hours: 45

TEXT BOOKS:

- 1. EMC Corporation, Information Storage and Management, Wiley India, 2nd edition 2012
- 2. G.Somasundaram, A.Shrivastava, "Information Storage and Management: Storing, Managing and Protecting Digital Information in Classic, Virtualized and Cloud Environment", 2nd Edition, Wiley publication, 2012.

- 1. Robert Spalding, —Storage Networks: The Complete Reference —, Tata McGraw Hill, Osborne, 2003.
- 2. Meeta Gupta, Storage Area Networks Fundamentals, Pearson Education Limited, 2002.
- 3. Marc Farley, —Building Storage Networks, Tata McGraw Hill, Osborne, 2001.

COURSE CODE: EBCS22E	COU	RSE NA		IANAG	EMENT	[Ty/Lb/ ETL/II		L	S.	-	P/	C
10	Prerec	quisite: N	JII						Ту		3	<u>Lr</u>)	0/0	3
L : Lecture		-		nervise <i>c</i>	l Learn	ing P · P	rojec	rt R						0/0	
Ty/Lb/ETL						_					Cicu	1113			
OBJECTIVE		icory/L	ao/ Line	caaca	Theory	and Dat	<i>7</i> / 111tC	ıııa	Lvaraat	.1011					
The students sh		made to:													
Ident	ify and c	ategorie	s the vari	ous risks	s face by	an organi	zation								
-			sk contro												
						ss organiz	ation.								
COURSE OUT															
CO1					•	organizati		_							
CO2		ble to applying various risk control measure to the suitable risk organization (L3)													
CO3		nonstrating the knowledge of financial and financial related risks facing													
GO 4	,	rganizations (L3)													
CO4 CO5		e to analyzing a risk management program for an organization (L4) gn a risk management program for a business organization. (L5)													
Mapping of C							organ	nzau	on. (L5)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P	PO	08	PO9	PO1	10	PO11	P	012
							O 7								
CO1	3	3	3	2	2	2	2		2	2	1		1		
CO2	2	2	2	1	3	3	2		1	2	1		1		1
CO3	3	2	2	1	1	1	1		1	1	2			-	
CO4	2	3	2	1	2	2	3		1	1			-	1	1
CO5	3	3	3	2	3	2	1		1	1			1		1
COs /	DC	01		D	SO2			PO	13			PS	04		
PSOs	13	O1		1,	302			10	.5			13	04		
CO1		3			2				3				2		
CO2		3			2				3				3		
CO3		3			1				3				3		
CO4		3			3				1				1		
CO5		3			3				3				2		
3/2/1 Indicate	es Streng	gth Of C	orrelatio	on, 3 – H	ligh, 2- N	Medium,	1- Lov	W							
Category	Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary Skill Component Practical /Project								
					✓										

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S .Lr	P/ R	С
EBCS22E10	RISK MANAGEMENT	Ту	3	0/0	0/0	3

UNIT I: The Risk Management Process

9 Hrs

Introduction to software risk management, why do we need to manage risk in software development, Use, Objectives, Risk Management Paradigm, Risk management and litigation. Models for Risk Management.

UNIT II: Discovering Risk In Software Development

9 Hrs

Risk attributes and Identification, Identifying software risk, Common software project risks, Risk Taxonomy, Risk Mapping, statements, reviews., Risk ownership and stakeholder management.

UNIT III: Risk Assessment

9 Hrs

Objectives and goals. Approach to assessment, Risk assessment tools and techniques, presenting the risk findings.

UNIT IV: Planning Risk Mitigation Strategies

9 Hrs

Risk Planning, Best practices in the risk planning, Risk management tools, Risk mitigation strategies, Formulating and Implementing risk management plans.

UNIT V: Monitoring Risk in Software Projects

9 Hrs

Developing a process for monitoring risk, formulating a project risk database, Managing and tracking risk, Risk support tools. Software Risk Metrics, organization, estimation, development methodology.

Total Hours: 45

TEXT BOOKS:

- 1. Yacov Y. Haimes, (2011) Risk Modeling, Assessment, and Management, Wiley
- 2. John Mcmanus,(2004) Risk Management in software development projects, Elsevier Butterworth- Heinemann

- 1. Martin Loosemore, John Raftery, (2006) Risk management in projects, Taylor & Francis Ltd
- 2. Ravindranath P. C, (2007) Applied Software Risk Management, Auerbach,
- 3. Dale Walter Karolak,,(1995) Software engineering risk management, Wiley-Ieee Computer Society

COURSE CODE: EBCS22E11	COURSE NAME: CRYPTOGRAPHY AND NETWORK SECURITY	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	С
	Prerequisite: COMPUTER NETWORKS	Ty	3	0/0	0/0	3

L: Lecture T: Tutorial S.Lr: Supervised Learning P: Project R: Research C: Credits

Ty/Lb/ETL/IE: Theory/Lab/Embedded Theory and Lab/Internal Evaluation

OBJECTIVES:

The student will be able

- Understand OSI security architecture and classical of modern cryptography.
- To gain knowledge on Public Key Cryptography.
- Understand various block cipher modes.
- Understands the principles of public key cryptosystems, and different message authentication and integrity

technic															
COURSE OU		COs) : S	Student	s will b	e able t	0									
CO1	Understand vulnerabiliti	the fun	dament				ty, secu	irity a	rchitecture,	, threats a	nd				
CO2	Apply the algorithms[]		nt cryp	tograpl	nic ope	erations	of sy	mmet	ric and A	symmetri	c crypto	graphic			
CO3	To design, a	ınalyze	and im	plemen	t differe	ent netv	vork sec	curity	protocols [L4]					
CO4	Apply the v	Apply the various Authentication schemes to simulate different applications[L3]													
CO5		Understand various Security practices and System security standards[L2]													
		arse Outcomes with Program Outcomes (POs)													
COs/POs	PO1														
CO1	3	3 3 2 2 2 1 2 1 1 1													
CO2	3	2 3 2 3 1 2 1 2 1 1													
CO3	3	3 3 2 2 1 2 1 2 1 1 1													
CO4	3	2 3 2 3 2 2 2 1 1 2													
CO5	3	3	3	2	3	2	2	2	2	1	1	2			
COs / PSOs	PS	501			PSO2			PS	D3		PSO4				
CO1		3			2			2	ı		3				
CO2		3			1			1			3				
CO3		3			1			2			3				
CO4		3			2			2	,		3				
CO5		3			2			2			3				
3/2/1 Indicate	s Strength O	f Corr	elation,	3 – Hi	gh, 2- I	Mediun	n, 1- Lo)W		II.					
Category	Basic Science	Engineering Science	Humanities and social Science	Program Core	✓ Program elective	Open Elective	Inter Disciplinary		Practical /Project						
_				l		l				l					

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C
EBCS22E11	CRYPTOGRAPHY AND NETWORK SECURITY	Ту	3	0/0	0/0	3

UNIT I Introduction to modern cryptography

9 Hrs

OSI security architecture - Security attacks, Services and Mechanisms - -Network security model-Classical encryption techniques: substitution techniques, transposition techniques, steganography- Foundations of modern cryptography: perfect security – information theory – product cryptosystem – cryptanalysis.

NUMBER THEORY: Modular arithmetic-Euclid's algorithm- Fermat's and Euler's theorem- The Chinese remainder theorem- Discrete logarithms.

UNIT II SYMMETRIC KEY CIPHERS

9 Hrs

SYMMETRIC KEY CIPHERS: SDES – Block cipher Principles of DES – Strength of DES – Differential and linear cryptanalysis – Block cipher design principles – Block cipher mode of operation – Evaluation criteria for AES – Advanced Encryption Standard – RC4 –Key distribution.

UNIT III 9 Hrs

Public key cryptography: Principles of public key cryptosystems-The RSA algorithm-Key management - Diffie Hellman Key exchange--Elliptic curve cryptography.

UNIT IV

Cryptographic Data Integrity Algorithms

9 Hrs

Authentication requirement – Authentication function – MAC – Hash function – Security of hash function and MAC – MD5 - SHA - HMAC – CMAC - Digital signature and authentication protocols-DSS.

UNIT VNetwork Security and System Security

9 Hrs

Authentication Applications –Pretty Good Privacy – S/MIME – IP Security – Web Security.Intruders – Intrusion Detection– Malicious Software – Viruses and Related Threats -Viruses Countermeasures – Distributed Denial of Service Attacks - Firewalls – Firewall Design Principles – Trusted Systems.

Total Hours: 45

TEXT BOOK:

1. William Stallings (2011) *Cryptography And Network Security – Principles and Practices*, (5th ed.) Pearson Education.

- 1. Atul Kahate (2008) Cryptography and Network Security Tata McGraw Hill
- 2. Bruce Schneier (2007) Applied Cryptography, John Wiley & Sons Inc.
- 3. Charles B. Pfleeger, Shari Lawrence Pfleeger (2007) Security in Computing (4th ed.), Pearson Education

COURSE CODE EBCS22E12		MO	OBILE .	ADHO	C NETV	VORKS	S		Ty/Lb/ ETL/IE	L	T/S.L	r P/I	R C
	Prereg	uisite: N	Vil						Ту	3	0/0	0/0	3
L : Lecture T : Tutor				Learning	g P:Pro	oject R	: Resear	ch C: C	redits				
Ty/Lb/ETL/IE: The													
OBJECTIVES:													
The students should													
 Understand 													
Analyze and					_	ends, po	ssible ar	chitectu	ires, and th	e adv	antages/l	imits for	future
commercial							_						
Develop ma						technolo	ogy that	are bein	g widely de	eploye	ed throug	hout the	world.
COURSE OUTCO	MES (C	COs): St	udents v	will be a	able to								
001	a				1 0								
CO1		Create instant wireless networks for conventions, conferences, emergency situations, educational or nilitary uses, and more [L6]											
		•											
CO2									ucture exis				
CO3	To Inte	egrate w	ireless 1	nultihop	relayin	g techno	ologies v	with exi	sting wirele	ess LA	AN techn	ologies[]	[4]
CO4	To De	liver Qo	S for m	ultimedi	a and ot	her fund	ctions in	untethe	red nets [L	3]			
CO5	Transl	ate the I	ETF MA	ANET st	tandards	into pra	actical te	erms [L3	3]				
Mapping of Course													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	010 P	011	PO12
CO1	3	3	3	3	3	3	2	2	2		3	2	2
CO2	3	2	3	2	3	3	2	2	2		3	2	2
CO3	2	3	3	2	2	2	2	2	2		3	2	2
CO4	3	3	2	2	2	2	2	2	2		2	2	2
CO5	2	3	3	2	2	2	2	2	2		2	2	2
COs / PSOs		PSO1			PSO2			PSC	O3		-	PSO4	
CO1		3			3			3				2	
CO2		3			2			3				2	
CO3		2			3			2	1			3	
CO4		3			3			3				2	
CO5		3			3			2	1			2	
3/2/1 Indicates Stre	ngth Of	f Correl	ation, 3	– High	, 2- Med	dium, 1	- Low		_				
			ial										
			l soc	40	ive		nary	ient	ject				
ory	Basic Science	gu	Humanities and social Science	Program Core	Program elective	ive	Inter Disciplinary	Skill Component	Practical /Project				
Category	Scie	Engineering	ities	am (am e	Open Elective	Disc	Соп	cal ,				
Cai	asic	ngin	Humanit Science	ogra	ogra	'nE	ter]	=====================================	acti				
	B	回。	Hur	P	Pr	оре	In	Š	Pr				
					√								
			1		V	1							

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C
EBCS22E12	MOBILE ADHOC NETWORKS	Ту	3	0/0	0/0	3

UNIT I 9 Hrs

Introduction- Adhoc networks. Mobile Ad-Hoc networking with a View of 4G Wireless, Off-the-Shelf Enables of Ad Hoc, IEEE 802.11 in Ad Hoc Networks:

UNIT II 9 Hrs

Protocols, Performance and Open Issues, Scatter net Formation in Bluetooth Networks, Antenna Beam forming and Power Control for Ad Hoc Networks, Topology Control in Wireless Ad Hoc Networks, Broadcasting and Activity Scheduling in Ad Hoc Networks.

UNIT III 9 Hrs

Location Discovery, Routing Approaches in Mobile Ad Hoc Networks, Energy-Efficient Communication in Ad Hoc Wireless, Ad Hoc Networks Security, Self-Organized and Cooperative Ad Hoc Networking.

UNIT IV 9 Hrs

Simulation and Modeling of Wireless, Mobile, and Ad Hoc Networks, Modeling Cross-Layering Interaction Using Inverse Optimization Algorithmic Challenges in Ad Hoc Networks

UNIT V 9 Hrs

Sensor Networks Introduction to sensor network, Unique constraints and challenges, Localization and Tracking, Networking Sensors, Infrastructure establishment, Sensor Tasking and Control, Sensor network databases, Sensor Network Platforms and tools, Industrial Applications and Research directions.

Total Hours: 45

TEXT BOOKS:

- 1. Mobile Adhoc Networks Aggelou, George (McGraw-Hill).
- 2. Mobile Adhoc Networking Stefano Basagni (Editor), Marco Conti (Editor), Silvia Giordano (Editor), Ivan Stojmenovi&Cacute (Editor) (Wiley-IEEE Press).

- 1. Mobile Ad Hoc Networks 2009 George AggelouMcGraw Hill Education
- 2. Mobile Ad Hoc Networking: Cutting Edge Directions (IEEE Series on Digital & Mobile Communication) Hardcover Import, 26 March 2013 Stefano Basagn

COURSE CODE: EBCS22E13		RSE NA NETW(ORK II	NFRAS AGEM		CTURI	E	Ty/Lb/ ETL/IE	L	T/S	.Lr	P/R	C
	Prereq	uisite: C	Comput	er Netw	vorks			Ту	3	0/	0	0/0	3
L: Lecture T: T	utorial	S.Lr:	Supervi	sed Lea	arning	P : Pro	oject R	: Research C	C: Credit	S			
T/L/ETL /IE: Th	eory/La	b/Embe	dded T	heory a	ınd Lab	/Inter	nal Eva	luation					
OBJECTIVE:													
The students sho													
				onality	, to acq	uire kı	nowledg	e about VL	ANs, and	d to test I	Vetwo	rk	
security COURSE OUT				onto viil	II ba ab	10 to							
CO1													
CO2		the con											
							T 137	1 51 65 5					
CO3			_					nd EIGRP					
CO4				_				frastructure					
CO5							rastructi	ıres					
Mapping of Cou								DOO	DOO	DO10	DO1	1 D	010
COs/POs	PO1	PO2	PO3		PO5	PO6	_	PO8	PO9	PO10	PO1	1 P	012
CO1	3	2	2	2	2	3	1	3	3	3	3		2
CO2	3	2	1	2	2	3	2	1	3	3	3		2
CO3	3	3	2	3	3	3	2	3	3	2	3		3
CO4	3	3	2	3	2	3	3	3	3	3	3		3
CO ₂ / PCO ₂			<u> </u>	3		3	3	_	3	3		<u> </u>	3
COs / PSOs		PSO1		P	SO2			PSO3			PSC)4	
CO1		3			3 2			3 3			3		
CO2		3			2						2		
CO4		3			3			3			3		
CO5		3			2			3			$\frac{3}{2}$		
3/2/1 Indicates S	 		rrelatio	on 3_		2- Mea	dium 1.						
3/2/1 Malcates (lichgu		11 Clati	JII, J	IIIgii, A								
Category	Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project				
					✓								

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C
EBCS22E13	NETWORK INFRASTRUCTURE MANAGEMENT	Ту	3	0/0	0/0	3

UNIT I Internetworking & Ip Addressing

9Hrs

Internetworking Models – Layered Approach – OSI Reference Models – Ethernet Networking – Cabling – Data Encapsulation – Three Layer Hierarchical model – core layer – distribution layer – Access layer – TCP/IP and DoD Model – IP Addressing – Hierarchical IP Addressing scheme - Broadcast Address.

UNIT II Subnetting, VLSM And Ios

9Hrs

Subnetting basics – CIDR – VLSM Design – Summarization – Troubleshooting IP Addressing – IOS user interface – CLI – Router and switch Administrative Configuration – Router Interfaces – viewing, saving, and erasing configuration

UNIT III Managing Internetwork and Ip Routing

9Hrs

 $Internal\ component\ of\ a\ Router-routing\ boot\ sequence-configuration\ register-backing\ up\ and\ restoring\ configuration-CDP-resolving\ hostnames-Checking\ network\ connectivity-IP\ routing\ basics-Static\ routing-default\ routing-dynamic\ routing-IGRP$

UNIT IV Eigrp, OSPF, STP and VLANS

9Hrs

 $EIGRP\ features-RTP-DUAL-EIGRP\ to\ support\ large\ Networks\ -Configuring\ EIGRP\ -\ Load\ balancing-OSPF\ terminology-Configuring\ and\ verifying\ OSPF-DR\ and\ BDR\ elections-Loopback\ interfaces-troubleshooting-STP\ spanning\ tree\ terms\ and\ operations-VLANs\ Basics-memberships-VTP-Configuring\ VLAN-Inter\ VLAN\ routing.$

UNIT V ACLS, NAT and Wireless Technologies

9Hrs

Access Lists, VTY access, advanced Access List, Named ACLs, monitoring Access List, configuring access list – NAT names – PAT configuration – NAT using SDM – Wireless technologies – Unified wireless solutions – split MAC architecture – MESH and LWAPP - wireless security

Total Hours: 45

TEXT BOOKS:

- 1. Todd Lammle, 2011 "CCNA Cisco Certified Network Associate study guide Wiley India.
- 2. Brian Hill, 2013 "The complete Reference Cisco" Tata McGraw-Hill.

- 1. Richard Deal, 2013 "CCNA Cisco Certified Network Associate study guide" Tata McGraw-Hill.
- 2. Steven Latre et al 2015 "Intelligent Mechanism for Network Component and Security" Springer.

COURSE CODE EBCS22E14	CYB		NAME: DRENS		ND IN	NTERN	NET		Ty/Lb/ ETL/I	L	T/S.Lr	P/R	C
	Prere		: OS, D	ata Stı	ructure	, Netwo	orking,	Web	Ту	3	0/0	0/0	3
L : Lecture T : '			r : Sup	ervised	d Learn	ing P	: Proie	ct R: I	Research C:	Cre	dits		
T/L/ETL/IE: T			_			_	-						
OBJECTIVES													
The students show	uld be n	nade to											
• To lear	n the c	ompute	er foren	sic fur	ndamen	ıtals							
									l in the digi				
								ent the	data from h	acke	r or intru	der	
COURSE OUT													
CO1			ng how	to pro	otect th	e data/	secure	their pe	rsonal and	offic	ial data i	1	
G02	comp		1	•	. 1	· ', 1 C	•						
CO2			cyberc										
CO3				•					curity techn	olog	gies.		
CO4				_				elp of c	case study				
CO5			ious in										
Mapping of Co				`									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO			
CO1	3	3	2	2	2	2	2	2	1	1			1
CO2	3	3	3	3	2	2	2		2	1	l 1		1
CO3	3	3	2	2	3	2	2	1	1				
CO4	3	3	3	3	3	3	1	1					
CO5	3	3	3	3	3	3	1	1		1			
COs / PSOs		PSO1			PSO2			PS				04	
CO1		3			3			3				3	
CO2		3			3			2				3	
CO3		3			3			2				3	
CO4		3			3			2				3	
CO5		3			3			2				3	
3/2/1 Indicates	Stren	gth Of	Corre	lation,	3 - Hi	igh, 2-	Mediu	ım, 1- I	Low				
Category	Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project				
					~								

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C
EBCS22E14	CYBER FORENSICS AND INTERNET SECURITY	Ту	3	0/0	0/0	3

UNIT I – Cyber Forensics

9Hrs

Introduction to Cyber Forensics, Definition and types of cybercrimes, electronic evidence and handling, electronic media, collection, searching and storage of electronic media, introduction to internet crimes, hacking and cracking, credit card and ATM frauds, web technology, cryptography, emerging digital crimes and modules.

UNIT II – Cyber Forensic systems

9Hrs

Understanding Computer components- input and output devices, CPU, Digital Media, System software - Operating System Architecture, Application Software, File Systems, Memory organization concept, Data Storage concepts. Network: Topology, Devices, Protocols and Port, Communication media. IP Address: Types and classes.

9Hrs

UNIT III – Cyber Attacks

Ethical hacking, Attack Vectors, Cyberspace and Criminal Behavior, Clarification of Terms, Traditional Problems associated with Computer Crimes, Realms of Cyber world, brief history of the internet, contaminants and destruction of data, unauthorized access, computer intrusions, white-collar crimes, viruses and malicious code, virus attacks, pornography, software piracy, mail bombs, exploitation, stalking and obscenity in internet, Cyber psychology, Social Engineering.

UNIT IV – Digital Forensic

9Hrs

Introduction to Digital forensics, Forensic software and handling, forensic hardware and handling, analysis and advanced tools, forensic technology and practices, Biometrics: face, iris and fingerprint recognition, Audio-video evidence collection, Preservation and Forensic Analysis.

UNIT V – Internet Security

9Hrs

E-mail Security, Pretty Good Privacy (PGPs) / MIME, IP Security, Access and System Security, Intruders, Intrusion Detection and Prevention, Firewall, Hardware Firewall, Software Firewall, Application Firewall, Packet Filtering., Packet Analysis, Proxy Servers, Firewall setting in Proxy, ACL in Proxy.

Total Hours:45

TEXT BOOKS: 1. John R. Vacca, (2005) Computer Forensics: Computer Crime Scene Investigation, 2nd Edition, Charles River Media. 2. Man Young Rhee, (2003) "Internet Security Cryptographic Principles, Algorithms and Protocols", WILEY.

- 1. William Stallings, "Cryptography and Network Security: Principles and Standards", Prentice Hall India, 3rd Edition, 2003
- 2. Computer Forensics: Investigating Network Intrusions and Cyber Crime (Ec-Council Press Series: Computer Forensics), 2010
- **3.** Christof Paar, Jan Pelzl, Understanding Cryptography: A Textbook for Students and Practitioners, 2nd Edition, Springers, 2010.

COLIDGE	COLU	DCE NI	A M/E.						1		I					
COURSE CODE:	COOL	RSE NA		BASE	SECTI	DITV			Ty/L	/b /	т	T/S	т	D/	D	C
EBCS22E15			DATA	DASE	SECUI	XIII			ETL	/IE	L	1/5	.Lr	P /	K	C
22 0022210	Prerec	quisite:	Nil						Ту	V	3	0/	' 0	0/	0	3
L : Lecture				unervis	ed Lea	rning F	• Proje	ect R			∵ C	redits	<u> </u>			
Ty/Lb/ETL/				_		_	-				. C	10010	,			
OBJECTIV					<u> </u>		0, 111001									
The students		d be ma	ide to													
				in datab	ase sec	urity										
_	-			atabase		-	8									
• Lea	rn to au	idit the	databas	ses.												
COURSE (OUTCO	OMES	(COs):	Studen	ts will	be able	to									
CO1	Under	rstand t	he fund	lamenta	ls of se	curity p	orocess	[L2]								
CO2	Analy	ze the	differen	t datab	ase per	spective	e and vi	ulnera	abilities	s in op	era	ting s	ysten	n[L4	4]	
CO3	Apply	the sec	curity p	olicies	and tec	hniques	s[L3]									
CO4				lyvario				on in	Securi	ty Mo	dels	s[L2]				
CO5				•				process[L4]								
Mapping of	f Cours	se Outc	comes v	vith Pr	ogram	Outco	mes (P	Os)								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO	8	PO9	P	010	PO1	11	PC)12
CO1	3	2	1	2	1	1	1						1		1	1
CO2	3	2	3	2	1	1	2						1		1	1
CO3	3	2	2	2	1	1	2						1			1
CO4	3	3	3	2	2	2	1						2		2	2
CO5	3	3	2	2	2	1	2						1		1	1
COs/		PSO1			PSO ₂			P	SO3				PS	04		
PSOs																
CO1		2			3				3				3			
CO2		2			3				3				3			
CO3		2			3				3				3			
CO4		3			3				3				3			
CO5		3		1 4.	3	TT. 1	N	1.	3				2			
H/M/L indi	cates S	trengt		rrelati	on H	- High,	N1- N16	ediun	n, L-Lo	ow				_		
			nce													
			cie													
		a)	al S													
		enc	šoci		ive		ГУ	nt	ct							
ory	e e	Science	s pu	4)	lect	d)	lina	one	oje							
Category	ien		es a	Corc	m e	tiv	cip	du	/Pı							
Ca	Sc	erii	nitie	m (Program elective	Elec	Dis	Co	ical							
	Basic Science	Engineering	Humanities and social Science	Program Core	Pro	Open Elective	Inter Disciplinary	Skill Component	Practical /Project							
	В	En	Hu	Prc		ďО	Ir	S	\mathbf{P}_{l}							
					✓											
	I	I	I	I	•	I	I	Ì	I					1		

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	С
EBCS22E15	DATABASE SECURITY	Ту	3	0/0	0/0	3

UNIT I Security Architecture & Operating System Security Fundamentals 9Hrs

Security Architecture: Introduction-Information Systems- Database Management Systems-Information Security Architecture- Database Security—Asset Types and value-Security Methods Operating System Security Fundamentals: Introduction-Operating System Overview-Security Environment – Components- Authentication Methods-User Administration-Password Policies-Vulnerabilities-E-mail Security.

UNIT II Administration of Users, Profiles, Password Policies, Privileges and Roles 9 Hrs

Administration of Users: Introduction-Authentication-Creating Users, SQL Server User-Removing, Modifying Users-Default, Remote Users-Database Links-Linked Servers-Remote Servers-Practices for Administrators and Managers-Best Practices Profiles, Password Policies, Privileges and Roles: Introduction-Defining and Using Profiles-Designing and Implementing Password Policies-Granting and Revoking User Privileges-Creating, Assigning and Revoking User Roles-Best Practices.

UNIT III Database Application Security Models

9 Hrs

Introduction-Types of Users-Security Models: Access Matrix model, Access mode model- DBMS Design Security Packages-Statistical Database Protection & Intrusion Detection Systems-Application Types: Client/Server Applications, Web Applications, Data ware house applications- Application Security Models-Data Encryption.

UNIT IV Virtual Private Databases

9 Hrs

Virtual Private Databases: Introduction-Overview of VPD-Implementation of VPD using Views, Application Context in Oracle-Implementing Oracle VPD-Viewing VPD Policies and Application contexts using Data Dictionary, Policy Manager Implementing Row and Column level Security with SQL Server.

UNIT V Auditing Database Activities and Project Cases

9 Hrs

Using Oracle Database Activities-Creating DLL Triggers with Oracle - Auditing Database Activities with Oracle-Auditing Server Activity with SQL Server 2000-Security and Auditing Project Case Study - Case Studies: Developing an online database, payroll management, tracking database changes, developing a secured authorization repository.

Total Hours: 45

TEXT BOOK:

1. Hassan A. Afyouni, 2009 "Database Security and Auditing", Third Edition, Cengage Learning.

- 1. Charu C. Aggarwal, Philip S Yu, 2008, "Privacy Preserving Data Mining": Models and Algorithms, Kluwer Academic Publishers.
- 2. Ron Ben Natan, 2005, "Implementing Database Security and Auditing", Elsevier Digital Press.

COURSE	COLI	OCE MA	ME.					1					
COOKSE	COURSE NAME:						Ty/L		L	T/S.L	P/I	$\mathbf{R} \mid \mathbf{C}$	
EBCS22E16	MAN	AGEM	ENT IN	NFORN	ЛАТІО	N SYS	ГЕМЅ	ETL/	IE	_	r	1 .	
	Prerequisite: Nil Ty 3									3	0/0	0/0) 3
L : Lecture T	: Tutori	al S.L	r : Supe	ervised	Learnin	g P:P1	roject I	R : Rese	arch C: C	redi	ts		<u> </u>
Ty/Lb/ETL/II			•			_	v						
OBJECTIVE	ES:	-			-								
The students	should	be made	e to										
• E	valuate	the role	of the	major ty	pes of i	informa	tion sys	stems in	a busine	ss en	vironm	ent and	d their
re	elationsl	nip to ea	ach othe	er;									
				Interne	et and In	iternet t	echnolo	gy on b	usiness e	lectr	onic co	nmerc	e and
		e busine	-		_			_					
								and usi	ng inforn	natio	n systei	ns and	learn
		* *	opriate				lenges						
COURSE OU		•											
CO1			ne basic	concep	ts and te	echnolo	gies use	ed in the	field of	mana	agemen	infor	matior
~~		ns (L1)											
CO2								sues of i	nformati	on sy	stems.	(L3)	
CO3			d about			(
CO4	1 I			_				Oriente	d Applic	atior	is are lil	te DB	MS
CO.			to acco					(T. 5)					
CO5			EDI (Ele					(L5)					
Mapping of C								DOG	DOG	D/)10 D	011	DO 14
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	+			PO12
CO1 CO2	3 2	3	3	3 2	3	1	2 2	2 2	$\frac{1}{1}$		1	1 1	
CO2	3	2	3	2	3	2	1	3	2		1	1	
CO4	3	3	3	3	3	2	1	1			1	1	1
CO5	3	3	3	2	3	1	1	1					<u> </u>
COs / PSOs		PSO1			PSO2			PSO	3			SO4	
CO1								1				2	
CO2		3 2										-	
	3 2 2 2 2 3 2 3											3	
1 1 1 1 1													
CO3		3			3			2				3	
CO4		3			3 2			3				3	
CO4 CO5	es Strer	3	Correl	ation, 3	2	1, 2- Me	edium,	3				3	
CO4	es Strer	3		ation, 3	2 3 – High	1, 2- Me	edium,	3					
CO4 CO5		3		ation, 3	2 3 – High	1, 2- Me		3 1- Low	lect				
CO4 CO5 3/2/1 Indicate		3 ngth Of			2 3 – High			3 1- Low	Project				
CO4 CO5 3/2/1 Indicate		3 ngth Of	ies and social		2 3 – High			3 1- Low	ical /Project				
CO4 CO5 3/2/1 Indicate		3 ngth Of	ies and social		2			3 1- Low	ractical /Project				
CO4 CO5	Basic Science	3	Humanities and social Science	Arogram Core	2 3 – High	Open Elective	Inter Disciplinary	3	Practical /Project				
CO4 CO5 3/2/1 Indicate		3 ngth Of	ies and social		2 3 – High			3 1- Low	Practical /Project				

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.L r	P/R	C
EBCS22E16	MANAGEMENT INFORMATION SYSTEMS	Ту	3	0/0	0/0	3

UNIT I: FUNDAMENTALS OF INFORMATION SYSTEMS

9 Hrs

Information systems in business-Fundamentals of information systems-Solving business problems with information systems-Business Information systems-Transaction processing systems-Management Information Systems and Decision Support Systems-Artificial intelligence technologies in business-Information system for strategic applications and Issues in Information Technology.

UNIT II: ISSUES IN MANAGING INFORMATION TECHNOLOGY

9 Hrs

Managing Information Resources and Technologies-Global Information Technology, Management, Planning and Implementing Change- Integrating Business change with IT-Security and Ethical challenges in managing IT-Social challenges of InformationTechnology.

UNIT III: INTRODUCTION TO E-BUSINESS

9 Hrs

E-commerce frame work, Media convergence, Consumer applications, Organization applications-BUSINESS MODEL: Architectural frame work for E-commerce, Application services and transaction Models – B2C Transactions, B2B Transactions- Intra-Organizational Transactions- WWW Architecture: Client server structure of the web- E-Commerce Architecture-Technology behind the web.

UNIT IV: CONSUMER-ORIENTED E-COMMERCE

9 Hr

Consumer oriented Application: Finance and Home Banking- Home shopping-HomeEntertainment, -Mercantile Process Models-Consumers perspective- Merchantsperspective.

UNIT V: ELECTRONICS DATA INTERCHANGE (EDI)

9 Hrs

EDI Concepts, Applications in business – components of international trade, CustomsFinancial EDI, Electronic fund transfer, Manufacturing using EDI, Digital Signatures and EDI.

Total Hours: 45

TEXT BOOKS:

- 1. Management Information Systems- Managing Information Technology in the internet worked Enterprise- James. A O'Brien Tata McGraw Hill publishing company limited, 2002.
- 2. Management Information Systems Laaudon& Laudon PHI ISBN 81-203-1282-1.1998. REFERENCES:
- 1. Management Information systems- S. Sadogopan.PHI 1998Edn. ISBN 81-20311809
- 2. Information systems for modern management G.R. Murdi

ELECTIVE-III

COURSE CODE	COURSE NAME: MOBILE APPLICATION DEVELOPMENT	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	С
EBCS22E17	Prerequisite: Operating System, Computer Graphics, Computer Networks and Web Design	Ту	3	0/0	0/0	3

L: Lecture T: Tutorial S.Lr: Supervised Learning P: Project R: Research C: Credits

T/L/ETL/IE: Theory/Lab/Embedded Theory and Lab/Internal Evaluation

OBJECTIVES:

The students should be made to

- Describe the limitations and challenges of working in a mobile and wireless environment
- Describe and apply the different types of application models/architectures used to develop mobile software applications.

		the co				ure of a	a mobile d	levelo	opment	frameworks	.		
COURSE									F		•		
CO1									nalyze i	ts architectu	ires		
CO2										roid and Ap			
CO3	Appı	ehend	the des	ign and	d devel	op owi	n mobile a	pplica	ation				
CO4	•						models a			res			
CO5	Anal	yze the	concep	ots of v	arious	mobile	services						
Mapping	of Cou	ırse Oı	utcome	es with		am Oı	itcomes (POs)					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7]	PO8	PO9	PO10	PO11	PO12
CO1	1	3	2	1	1	2	3		2	1	1		
CO2	2	2	3	1	1	2	3		2	1			1
CO3	3	3	3	2	3	3	3		2	2			
CO4	3	2	3	3	2	2	3		1	2	1	1	
CO5	2	2	2	1	3	3	2						1
COs/		PSO1			PSO ₂		PSO	3			PSO4		
PSOs													
CO1		3			2		3				3		
CO2		3			2		2				3		
CO3		3			3		2				2		
CO4		2			2		3				3		
CO5 3/2/1 Indi	22422	2	h Of (Yammala	3) II!~	3 h 2 Mad	1:	1 T a	_	3		
3/2/1 Indi		Strengt	ın Oi C		auon, 3		n, 2- Med	num,	1- LOW	/			
Category	Basic Sciences	Engineering Sciences	Humanities and Social	50	Program Electives	Open Electives	Practical / Project	Internships /	Soft Skills				
•					/								

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C
EBCS22E17	Mobile Application Development	Ту	3	0/0	0/0	3

UNIT I Introduction 9 Hrs

Introduction to Mobile Platforms – Exploring Android Platform – Android Studio, Java, XML – Exploring Apple IPhone Platform – XCode, Objective C, Swift – Options for development, Mobile Software Engineering

UNIT II User Interface Development

9 Hrs

UI Elements – Frameworks and Tools - Generic UI Development – VUIs and Mobile Apps - Designing the Right UI - Multichannel and Multimodial UIs - Layouts – Android Intents and Services - Gesture based interfaces –Styles & Themes.

UNIT III Google Andriod Platform

9 Hrs

Characteristics of Mobile Applications - Google Application Architecture - Basic Building Blocks - The Android Emulator - Event based programming - SQLite Database Access - ADB - Mobility and Location Based Services

UNIT IV Apple Iphone Platform

9 Hrs

 $\label{lem:continuous} \begin{tabular}{l} \textbf{UI Kit for Interfaces - Understanding basics of Swift - Application development using Swift - Understanding basics of Objective - C - App development using Objective - C - SQLite Database Access - Application Debugging - Location Handling \\ \end{tabular}$

UNIT V Implementing Software as a Service

9 Hrs

Service Oriented Computing Examples – Google Maps – Enabling Map based services in Application – Amazon Web Services – Exploring AWS S3 & AWS IoT APIs. Case studies on Mobile Application

Total Hours: 45

TEXT BOOKS:

- 1. Ed Burnette (2015) Hello, Android: Introducing Google's Mobile Development Platform, 4th edition, Pragmatic Bookshelf.
- 2. Marko Gargenta (2011) Learning Android, O'Reilly Media.

REFERENCE BOOKS:

1. Richard Rodger (2012) Beginning Mobile application development in the cloud, Wrox Publication. 2. Jonathan A. Zdziarski (2008), iPhone Open Application Development, 2nd edition, O'Reilly Media Publication.

COURSE CODE EBCS22E18	COUR	SE NAI		A SCIE	NCE			Ty/Lb/ ETL/IE		L	T/S.Lr	P/R	C
EBCS22E16	Prereq	uisite: N	Vil					T	у	3	0/0	0/0	3
L : Lecture T	: Tutor	ial S.I	Lr : Sup	ervised	Learni	ng P:	Project F	R : Researc	h C: Cred	its			
Ty/Lb/ETL/II						_							
OBJECTIVE					•								
The students	should l	be made	e to										
• know	the fur	ndamen	tal conc	epts of	data sci	ience a	nd analyt	ics					
			•	mining	-								
			_	fferent									
				ap Redu									
COURSE OU	TCOM	ES (CC	Os): Stu	dents w	ill be a	ble to							
CO1	Under	stand tl	ne appli	cation a	ınd pro	cess of	data scie	nce[L2]					
CO2	Analy	zing the	e differe	ent mod	els witl	n exam	ples[L4]						
CO3	Apply	ing var	ious tec	hniques	for da	ta mini	ng[L3]						
CO4	Write	and eva	aluate e	fficient	algoritl	nms for	r mining t	he data fro	m large vo	olume	s[L5]		
CO5		stand a ems[L3]		y differ	ent Fra	mewor	ks and Vi	sualization	technique	es for	Real world		
Mapping of C				Program	n Outce	omes (1	POs)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9 PO	O10	PO11	P	D12
CO1	3	3	2	2	1	1	1	100	10) 10	510	1	1 (<u>712</u> 1
CO2	3	3	3	2	1	1	2				1		1
CO3	3	3	2	2	1	1	2				1		1
CO4	3	3	2	2	2	2	1				2		2
CO5	3	3	2	2	2	1	2				1		1
COs / PSOs		PSO1			PSO2			PSO3	}		PS	O4	
CO1		3			3			3			2)	
CO2		3			3			2			2		
CO3		3			3			3			3		
CO4		3			3			2			2		
CO5		3			3			2			2		
3/2/1 Indicate	s Stren	gth Of (Correlat	ion, 3 –	High,	2- Med	lium, 1- L	LOW					
Category	Basic Science	Engineeri	Humanities and		gram	ctive	Inter Disciplinary	Skill Component	Practical /Project	120011	_		
					√								

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C
EBCS22E18	DATA SCIENCE	Ту	3	0/0	0/0	3

UNIT I Introduction To Data Science And Big Data

9 HRS

Introduction to Data Science – Applications - Data Science Process – Exploratory Data analysis – Collection of data – Graphical presentation of data – Classification of data – Storage and retrieval of data – Big data – Challenges of Conventional Systems - Web Data – Evolution Of Analytic Scalability - Analytic Processes and Tools - Analysis vs Reporting - Modern Data Analytic Tools - Statistical Concepts: Sampling Distributions - Re-Sampling - Statistical Inference - Prediction Error.

UNIT II Data Analysis

9 HRS

Correlation – Regression – Probability – Conditional Probability – Random Variables – Analysis using Mean, Median, Mode, Standard Deviation, Skewness, Kurtosis- Regression Modeling - Multivariate Analysis - Bayesian Modeling - Inference and Bayesian Networks - Support Vector and Kernel Methods - Analysis of Time Series: Linear Systems Analysis - Nonlinear Dynamics.

UNIT III Data Mining Techniques

9 HRS

Rule Induction - Neural Networks: Learning and Generalization - Competitive Learning - Principal Component Analysis and Neural Networks - Fuzzy Logic: Extracting Fuzzy Models from Data - Fuzzy Decision Trees - Stochastic Search Methods- Neuro-Fuzzy Modelling - Association rule mining - Clustering - Outlier Analysis - Sequential Pattern Mining - Temporal mining - Spatial mining - Web mining.

UNIT IV Mining Data Streams

9 HRS

Introduction To Streams Concepts – Stream Data Model and Architecture - Stream Computing - Sampling Data in a Stream – Filtering Streams – Counting Distinct Elements in a Stream – Estimating Moments – Counting Oneness in a Window – Decaying Window - Real time Analytics Platform (RTAP) Applications - Case Studies - Real Time Sentiment Analysis, Stock Market Predictions.

UNIT V Frameworks and Visualization

9 HRS

$$\label{lem:map-seq} \begin{split} &\text{Map Reduce} - \text{Hadoop, Hive, MapR} - \text{Sharding} - \text{NoSQL Databases} - \text{Cloud databases} - \text{S3} - \text{Hadoop Distributed} \\ &\text{File Systems} - \text{Visualizations} - \text{Visual Data Analysis Techniques} - \text{Interaction Techniques} - \text{Social Network Analysis} \\ &- \text{Collective Inferencing} - \text{Egonets} - \text{Systems} \text{ and Applications}. \end{split}$$

Total Hours: 45

REFERENCES

- 1. Michael Berthold, David J. Hand, "Intelligent Data Analysis", Springer, 2007.
- 2. Anand Rajaraman and Jeffrey David Ullman, "Mining of Massive Datasets", Cambridge University Press, 2012.
- 3.Bill Franks, "Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with Advanced Analytics", John Wiley & sons, 2012.
- 4. Jiawei Han, Micheline Kamber "Data Mining Concepts and Techniques", Second Edition, Elsevier, Reprinted 2008.
- 5. Rachel Schutt, Cathy O'Neil, "Doing Data Science", O'Reilly Publishers, 2013.
- 6. Foster Provost, Tom Fawcet, "Data Science for Business", O'Reilly Publishers, 2013.
- 7. Bart Baesens, "Analytics in a Big Data World: The Essential Guide to Data Science and its Applications", Wiley Publishers, 2014.
- 8. S. N. Sivanandam, S. N Deepa, "Introduction to Neural Networks UsingMatlab 6.0", Tata McGraw-Hill Education, 2006.

COURSE CODE		SE NAN		M ARC	HITEC	TURES		Ty/Ll		L	T/S.L	P/R	С		
EBCS22E19								ETI	_/IE		r				
	Prerequ	uisite: N	il					Т	y	3	0/0	0/0	3		
L: Lecture T	: Tuto	rial S	S.Lr : S	upervis	sed Lea	rning	P : Proj	ect R:	Resear	ch C	C: Credit	S			
Ty/Lb/ETL/I	E: The	eory/La	ab/Emb	edded	Theory	and L	ab/Inter	rnal Eva	aluation						
OBJECTIVES	S:	·													
The students	should	d be ma	ade to												
• Under	rstand tl	he basic	s of an	embedd	led syste	em.									
Under	rstand tl	he typic	al comp	onents	of an er	nbedde	d systen	n.							
• To un	derstan	d differ	ent com	munica	tion inte	erfaces.									
• To lea	arn the o	design p	rocess	of embe	edded sy	stem ap	plicatio	ons.							
• To un	derstan	ds the R	TOS ar	nd inter-	-process	comm	unicatio								
COURSE OU															
CO1						•	em (L1)								
CO2	Able t	o desigi	n proces	ssor and	l memor	y for E	mbedde	d systen	ns (L5)						
CO3	To dev	velop ar	Embed	dded Fi	rmware	(L5)									
CO4	To ide	ntify be	est opera	ating sy	stem for	r embed	lded sys	tem (L4	.)						
CO5					municat		n (L3)								
Mapping of Co	ourse O	utcomes	with Pr	ogram	Outcom	es (POs)								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PC)10 PC)11 P	O12		
CO1	3	3	3	3	3	3	2	1					1		
CO2	3	3	3	3	3	3	2	1	1						
CO3	2	2	2	3	3	2	2	1	1			1			
CO4	3	3	2	2	2	2	2	-		_	1				
CO5	3	2	2	2	2	2	2	1			2				
COs / PSOs		PSO1			PSO2			PSO3	2	1	D	SO4			
COS/TSOS		1301			1302			130.	,		1	304			
CO1		3			3			3				2			
CO2		3			2			3				2			
CO3		3			2			2				2			
CO4		3			3			3				2			
CO5	G ₄	3	1 4*	2 1	2	A 11	1 7	2				2			
3/2/1 Indicates	Strengt	th Of Co	orrelatio	on, 3 – H	11gn, 2- 1	viedium	, 1- Low	7 							
Category	Basic Science	Engineer ing	Humanities and social Science	Program Core	Program elective	Open Elective	Open Elective Inter Disciplinary Skill Component Practical /Project								
					✓										

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/SLr	P/R	С
EBCS22E19	EMBEDDED SYSTEM ARCHITECTURES	Ту	3	0/0	0/0	3

UNIT –I 9 Hrs

Introduction to Embedded Systems: Definition of Embedded System, Embedded SystemsVs General Computing Systems, History of Embedded Systems, Classification, MajorApplication Areas, Purpose of Embedded Systems, Characteristics and Quality Attributes of Embedded Systems.

UNIT -II: 9Hrs

Typical Embedded System: Core of the Embedded System: General Purpose and DomainSpecific Processors, ASICs, PLDs, Commercial Off-The-Shelf Components (COTS), Memory: ROM, RAM, Memory according to the type of Interface, Memory Shadowing, Memory selection for Embedded Systems, Sensors and Actuators, Communication Interface:Onboard and External Communication Interfaces.

UNIT -III: 9Hrs

Embedded Firmware: Reset Circuit, Brown-out Protection Circuit, Oscillator Unit, RealTime Clock, Watchdog Timer, Embedded Firmware Design Approaches and DevelopmentLanguages.

UNIT -IV:

RTOS Based Embedded System Design: Operating System Basics, Types of OperatingSystems, Tasks, Process and Threads, Multi processing and Multitasking, Task Scheduling.

UNIT -V:

TASK COMMUNICATION: Shared Memory, Message Passing, Remote Procedure Calland Sockets, Task Synchronization: Task Communication/Synchronization Issues, TaskSynchronization Techniques, Device Drivers, How to Choose an RTOS.

Total Hours:45

TEXT BOOKS:

1. Introduction to Embedded Systems - Shibu K.V, Mc Graw Hill.

- 1.Embedded Systems Raj Kamal, TMH.
- 2. Embedded System Design Frank Vahid, Tony Givargis, John Wiley.
- 3. Embedded Systems Lyla, Pearson, 2013.
- 4. An Embedded Software Primer David E. Simon, Pearson Education.

COURSE CODE EBCS22E20	COURSE NAME: AGILE SOFTWARE DEVELOPMENT	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C
	Prerequisite: Nil	Ty	3	0/0	0/0	3

L: Lecture T: Tutorial S.Lr: Supervised Learning P: Project R: Research C: Credits

Ty/Lb/ETL/IE: Theory/Lab/Embedded Theory and Lab/Internal Evaluation

OBJECTIVES:

The students should be made to

- Understand the theoretical as well as practical aspects of agile software development practices and how small teams can apply them to create high-quality software.
- Understanding of software design and a set of software technologies and APIs.
- do a detailed examination and demonstration of Agile development and testing techniques.
- Understand the benefits and pitfalls of working in an Agile team.
- Understand Agile development and testing.

	Ū		•	Ū								
COURSE OUT	COME	S (COs):	Student	s will be a	ble to							
CO1	Analyz	e existin	g proble	ms with th	e team,	developn	nent prod	cess and	wider org	anization[L	<i>A</i>]	
CO2	Apply	a thoroug	gh under	standing of	f Agile p	orinciple	s and spe	ecific pr	actices[L3]]		
CO3	Unders	stand and	apply th	ne most app	propriate	e way to	improve	results	for a speci	fic circums	tance or no	eed[L2]
CO4	_	e and ap		opriate ada	ptations	s to existi	ing pract	ices or	processes d	lepending u	ipon analy	sis of
CO5							anage lik	ely risk	s or proble	ems[L5]		
Mapping of Co							_				_	
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	1	1	1		1		1	1
CO2	3	3	3	2	1	1	2		1		1	1
CO3	3	2	3	2	1	1	2		1		1	1
CO4	3	2	2	2	2	2	1	1	2		2	2
CO5	3	3	2	2	2	1	2	1	1		1	1
COs / PSOs		PSO1			PSO2			PS	03		PSO4	
CO1		3			3			2			3	
CO2		3			3			2			3	
CO3		3			3			3			2	
CO4		3			2			3			2	
CO5		3			2			3			2	
3/2/1 Indicates	Strengt	h Of Cor	rrelation	, 3 – High	, 2- Me	dium, 1-	Low					
	8		nd social		elective		linary	onent	oject			
Category	Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project			
					✓							

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	С
EBCS22E20	AGILE SOFTWARE DEVELOPMENT	Ту	3	0/0	0/0	3

UNIT I-Agile Development

9 Hrs

Agile Practices, Overview of Extreme Programming, Planning, Testing, Refactoring, A Programming Episode.

UNIT II-Agile Design 9 Hrs

What is Agile Design? SRP: The Single-Responsibility Principle, OCP: The Open-Closed Principle, LSP: The Liskov Substitution Principle, DIP: The Dependency-Inversion Principle, ISP: The Interface-Segregation Principle.

UNIT III-The Payroll Case Study

9 Hrs

Command and Active Object, Template Method & Strategy: Inheritance vs Delegation, Facade and Mediator, Singleton and Monostate, Null Object, The payroll Case Study: Iteration One Begins, The Payroll Case Study: Implementation.

UNIT IV-Packaging the Payroll System

9 Hrs

Principles of Package Design, Factory, The Payroll Case Study (part 2)

UNIT V-The Weather Station Case Study

9 Hrs

Composite, Observer-Backing into a Pattern, Abstract Server, Adapter, and Bridge, Proxy and Stairway To Heaven: Managing Third Party APIs, Case Study: Weather Station.

Total Hours: 45

TEXT BOOKS:

1. "Agile Software Development principles, Patterns and Practices" by Robert C. Martin, 1st edition 2003.

- 1."Agile Software Developement" by Thomas Uwe Hansmann, Springer-Verlag Berlin Heidelberg 2010.
- 2. "The Art of Agile Developement" by James Shore & Shane Warden 2006.

COURSE CODE	COUR	RSE NA		UTOM	ATION	1			Γy/Lb/	L	T/S.Lr	P/R	С
EBCS22E21								J	ETL/IE				
	Prereq	uisite: N	Vil						Ty	3	0/0	0/0	3
L : Lecture T :	Tutoria	l S.Lr	: Super	vised L	earning	P : Proj	ect R:	Researc	h C: Cred	its			II.
Ty/Lb/ETL/IE	: Theor	y/Lab/E	Embedde	ed Theo	ry and L	ab/Inte	rnal Ev	aluation	ı				
OBJECTIVES	S :	-			-								
The students s	hould b	e made	to										
 Unders 	stand the	e conce _j	pts of au	ıtomatic	on								
 Apply 	the soft	ware au	tomatio	n conce	pts in re	al world	1						
 Design 	ı usecas	es for a	ny softw	are pro	grams								
 Analyz 	ze the so	oftware	testing r	nodels									
COURSE OU	TCOM	ES (CC)s) : Stu	dents wi	ll be able	to							
CO1	Remer	nber the	concep	ts of Au	ıtomatic	n[L1]							
CO2	Under	stand the	e fundar	nentals	of Usec	ases. [L	2]						
CO3	Analy	ze theso:	ftware t	esting n	nodelsL	41							
CO4		the no c											
CO5							ase stud	ies in au	tomation	[L6]			
Mapping of C										,			
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P	O10 PC)11 I	PO12
CO1	3	3	3	3	3	3	3	3	3		2	3	3
CO2	3	3	3	3	3	3	3	3	2		2	3	3
CO3	3	2	2	2	3	3	2	3	2		2	2	3
CO4	3	2	2	2	3	3	2	3	2		2	2	3
CO5	3	2	2	2	3	3	2	3	2		2	2	3
COs / PSOs		PSO1	I.		PSO2	ı		PSC)3		P	SO4	
CO1		2			3			3				2	
CO2		1			3			3				2	
CO3		2			3			3				2	
CO4	<u> </u>	2			2			2				1	
CO5	<u> </u>	3			3			3				3	
	CI4	oth Of (Correla	tion, 3 -	- High,	2- Medi	ium, 1-	Low					
3/2/1 Indicates	s Streng	9022 02				l		1		ì		ĺ	
	s Stren	542 01			-		>	nt					
				4)	tive	4)	nary	onent	ject				
3/2/1 Indicate				ore	lective	tive	plinary	nponent	Project				
3/2/1 Indicate		ring		n Core	n elective	lective	isciplinary	Component	al /Project				
3/2/1 Indicate		ring		ram Core	ram elective	n Elective	Disciplinary	ill Component	tical /Project				
		ring		rogram Core	rogram elective	pen Elective	nter Disciplinary	Skill Component	ractical /Project				
3/2/1 Indicate	Basic Science Same	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project				

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	С
EBCS22E21	AUTOMATION	Ту	3	0/0	0/0	3

UNIT I 9Hrs

Overview- Types of automation -Overview of IT automation -Automation use cases -Automation trends - AI and machine learning in automation

UNIT II 9Hrs

Role of Automation in Computer-based Systems- Machine Readable Specification&Design- Automatic Code Verification-Automatic Load Testing- Automatic Problem Discovery- Intelligent Operator Training

UNIT III 9Hrs

Machine learning and workflow- Hyperautomation- Intelligent automation- Intelligent industrial robots-Low-code or no-code workflow

UNIT IV 9Hrs

Terminologies used in Testing- How to write testcases- Principles of testing- Test process steps- Levels of independence in testing- Levels of testing- Software testing models- Introduction to Jira tool-Bugzilla Tool

UNIT V 9Hrs

Invoicing without the use of paper- Applications for jobs - Automated notifications and warnings-Documents in the cloud- Automated software testing- Online sales and marketing- New career paths-Enhancing the need of cybersecurity- Automated data imports and exports

Total Hours:45

TEXT BOOKS:

- 1. Suresh Chandra Satapathy, Ajay Kumar Jena, Jagannath Singh, <u>Saurabh Bilgaiyan</u>," Automated Software Engineering: A Deep Learning-Based Approach (Learning and Analytics in Intelligent Systems) 1st ed. 2020 Edition"
- **2.** Design, Build, Ship: Faster, Safer Software Delivery 1st Edition, by Sam Newman (Author), ISBN-13: 978-1491984871

REFERENCE BOOKS:

1.Raoul-Gabriel Urma, Richard Warburton, "Real-World Software Development: A Project-Driven Guide to Fundamentals" 1st Edition

COURSE CODE	COURSE			COM	PUTIN	\G		•	//Lb/ TL/IE	L	T/S.L	r P/R	R C
EBCS22E22	Prerequisi	ite: Nil							Ty	3	0/0	0/0	3
L : Lecture T : Tu	torial S.L	r : Supe	ervised	Learnii	ng P:F	Project	R : Res	search (C: Credi	ts			
Ty/Lb/ETL/IE: T	heory/Lab/	Embedo	ded The	eory an	d Lab/I	nternal	l Evalu	ation					
OBJECTIVES:													
The students shou													
	id the conce	_						social o	computii	ng tec	hniques		
•	he techniqu					•	_						
	rious applic					nputing	g model	lS					
COURSE OUTC						11	1.77	D 1 II	13				
CO1	Remembe											_	
CO2	Apply, ev												
CO3	Recognize		asibility	y of app	olying a	social	comput	ting me	thodolo	gy for	a particu	lar Lea	ning
	model. [L												
CO4	Design th	e metho	odology	to solv	e optin	nizatio	n proble	ems usi	ng Artifi	cial a	lgorithm	s[L6]	
CO5	Design so	cial net	work a	nalysis	to revis	se the p	rinciple	es of so	cial com	putin	g in vario	ous	
	applicatio	ns[L6]				_	_						
Mapping of Cour			ı Progi	ram Oı	itcomes	s (POs))						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	POS	P	O10 P)11]	PO12
CO1	3	3	3	2	3	2	2	2	3		2	3	3
CO2	3	3	3	2	3	2	2	2	3		2	3	3
CO3	3	2	3	2	3	2	2	3	2		3	2	2
CO4	3	2	2	2	3	2	2	2	3		2	3	2
CO5	3	3	2	2	3	2	2	2	3		2	3	2
COs / PSOs	P	SO1			PSO2			PS()3		I	SO4	
CO1		3			3			2				3	
CO2		3			3			2				3	
CO3		3			3			3				2	
CO4		3			2			3				2	
CO5		3			2			3				2	
3/2/1 Indicates St	rength Of	Correl	ation, .	3 – Hig	h, 2- M	ledium	, 1- Lo	W	1		1	1	
			-				Inter Disciplinary	ent	ect				
	nce		anc	J.e		ve	plii	noc	Proj				
	cie	ing	ies	ပိ	am	ecti	isci	Tuuc	al /1				
Category	Basic Science	Engineering	Humanities and	Program Core	Program	Open Elective	r Di	Skill Component	Practical /Project				
C	asi	lgin nei	1m2	ogr	Pro	en	nte:	kil	rac				
	<u>н</u>	En	Hr	Pr	<u> </u>	OF	Iı	S	Ъ				
					✓								
				l]						

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	С
EBCS22E22	SOCIAL COMPUTING	Ту	3	0/0	0/0	3

UNIT I-DATA COLLECTION

9 Hrs

Data Collection-Data types and sources, Data Collection and Tools- Data Acquisition, Common Data Processing Toolkit.

UNIT II-DATA PROCESSING METHODOLGY

9 Hrs

Data Processing Principles-Behavior Tracking, Data Processing Methods.

UNIT III-SUPERVISED AND UNSUPERVISED LEARNING MODELS

9 Hrs

Supervised Learning Models-Generalized Linear Algorithms, Decision Trees, Bayesian Method, Bayesian Regression, Gaussian Processes. Unsupervised learning model-Dimensionality Reduction Algorithm, Clustering algorithm.

UNIT IV-STATE-OF-THE-ART ARTIFICAL INTELLIGENCE ALGORITHMS

9Hrs

Deep Learning, Reinforcement Learning, Brother Learning, Epiphany Learning.

UNIT V-SOCIAL NETWORK DATA MINING AND KNOWLEDGE DISCOVERY 9Hrs

Online Social Networks Text Processing Method-Information Extraction, Keyword Mining, Topics Detection and Tracking, online Social Networks Image Recognition methods-Image Retrieval, Image object Detection and Classification.

Total Hours: 45

TEXT BOOKS:

1. "Social Computing with Artificial Intelligence", byXung Liang, Springer 2020.

- 1. Huan Liu John J. Salerno Michael J. young," *Social Computing, Behavioral Modeling and Prediction*", Springer, 2008.
- 2. Ajith Abraham," Computational social Network Analysis": Springer

COURSE CODE: EBCS22E23		RSE NA NTERP		ARCH	ITECT	TURE	7	Ty/Lb/ ETL/I	E	,	Γ/S. Lr	P/R	C		
EBCS22E23	Prereq	uisite: 1	Vil					Ty		3	0/0	0/0	3		
L: Lecture T:	Tutorial	S.Lr	: Super	vised I	Learnin	g P:P	roject	R : Res	earch C	C: Credi	its				
T/L/ETL/IE: T		.ab/Eml	bedded	Theory	and L	ab/Inte	rnal E	Evaluatio	on						
OBJECTIVE:															
The students sh				1				1	TCD 1						
								a compl			e.				
								ons of an hese ele			ning t	hom			
COURSE OU							23 OI t	ilese ele	IIICIILS	ariu arig	giiiig (ileili.			
CO1		•	•				ise Ar	chitectur	·e.						
CO2		ze vario			•	Enterpr	150 7 11	Cintectal							
CO3						ne EA F	rame	work Im	nlemen	tation.					
CO4								process							
CO5		stand th													
Mapping of C	ourse O	utcom	es with	Progra	am Ou	tcomes	(POs)		_					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7		PO9	PO10	PO		012		
CO1	3	3	3	2	3	2	2	2	1	1		1			
CO2	3	3	3	2	3	2	2	1	2	1	1 1 1				
CO3	3	2	3	2	3	2	2		1		1				
CO4	3	2	2	2	3	2	2	1	1						
CO5	2	3	2	2	3	2	1	1							
COs / PSOs		PSO1			PSO2			PSO3	3		PS	5O4			
CO1		3			3			2				3			
CO2		3			3			2				3			
CO3		3			3			3				2			
CO4		3			2			3				2			
CO5		3			2			3				2			
H/M/L indicat	tes Strei	ngth of	Correl	ation	H- Hi	gh, M-	Medi	ium, L-I	∠ow						
Category	Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project						
					✓										

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S. Lr	P/ R	C
EBCS22E23	ENTERPRISE ARCHITECTURE	Ty	3	0/0	0/0	3

UNIT I INTRODUCTION

9 Hrs

An overview of Digital Transformation and Enterprise Architecture, The purpose and Scope of this Research, The Primary Related Research.

UNIT II DIRECTION OF DIGITAL IT AND ENTERPRISE ARCHITECTURE

9 Hrs

Introduction, Directions of Cloud/Mobile IT, EA Frameworks-TOGAF, FEAF, Adaptive EA, EA Framework Analysis, Agile Enterprise Architecture and Scaling Agile Frameworks.

UNIT III EVALUATION FOR EA FRAMEWORK IMPLEMENTATION METHOD

9 Hrs

Case of EA Framework Building in a Global Pharmaceutical Company, Evaluation and Analysis of Case Study.

UNIT IV EVALUATION OF ARCHITECTURE BOARD REVIEW PROCESS WITH KNOWLEDGE MANAGEMENT 9 Hrs

Case of "Architecture Board Reviwe" in Global HealthCare Company, Evaluation and Analysis of Case Study of Architecture Board view, Global Communication Case Study, Verification and summary.

UNIT V OVERALL EVALUATION AND PERSPECTIVES

9 Hrs

Overall Evaluation-valuation of AIDAF for agility-Related Elements, Perspectives on AIDAF-Benefits of EA Implementation-AIDAF, Challenges Encountered in EA Implementation of AIDAF, Global Communication Structure in Architecture Board.

Total Hours: 45

TEXT BOOK:

1. Yoshimasa Masuda MurlikrishnaViswanthan, 2019, Enterprise Architecture for Global Companies in a Digital IT Era, Springer.

- 1. Thierry PerroudRetoInversini, 2013 "Enterprise Architecture Patterns", Springer.
- 2. Danny Greefhorst Erik Proper, 2011 "Architecture principles of Enterprise Architecture" Springer

Course	Cours	e Name	e :					T	/T 1. /					
Code:		NE	TWOF	RK FO	RENSI	ICS			Lb/ L/IE	${f L}$	T/S	.Lr	P/R	C
EBCS22E24								EI	L/IE					
	Prerec	quisite:	Compu	iter Net	works			1	y	3	0/	/0	0/0	3
L : Lecture T :			•			_				: Credi	its			
Ty/Lb/ETL/IE		ry/Lab	/Embed	lded Th	eory ar	nd Lab/	Interna	ıl Evalı	ation					
OBJECTIVE														
The students s														
		-			_				lysis prii	-				
								nalysis a	nd netwo	ork sec	urity	techno	logie	S.
COURSE OU									,	C 11		• •		
CO1									l sources					
CO2							network	data ac	quisition	and a	nalysi	is using	5	ļ
CO3			sed appl				arotion	of notre	ork force	agio to:	nhnol.	ogica		
CO3			or netw					or netw	ork forei	isic tec	.1111010	ogies		
CO4			e netwo											
Mapping of C								9						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	0	PO11	P	012
CO1	3	3	1	3	1	3	3	2	3	2		3	_	2
CO2	3	3	3	3	3	2	2	2	3	2		3	_	2
CO3	3	3	3	3	3	2	2	2	3	2		3		<u>-</u>
CO4	3	3	3	3	3	2	2	3	2	2		3		3
CO5	3	3	3	2	2	3	1	3	3	2		3		1
COs / PSOs		PSO1			PSO2			PS	О3			PSC)4	
CO1		3			1				3			3		
CO2		3			2				3			3		
CO3		3			2				3			3		
CO4		3			2				3			3		
CO5		3			3				3			3		
3/2/1 Indicate	s Stren	gth Of	Corre	lation,	3 – Hig	gh, 2- N	<u> Aedium</u>	ı, 1- Lo	w			Т	-	
														ļ
			-T-					l t						
		Science	cia					ner						
		cie	l sc		ve		ury	odı	g					
ory	se		anc	re	ctiv	ve v	lina	, On	oje					
Category	ien	ing	ies	Ç	ele	cti	cip		/Pı					
Ca	Basic Science	Engineering	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project					
	sic	gin	Humani Science	ogr	gr	en	er]		acti					
	Ba	En	Hu Sci	Pro	Pro	Op	Int		Pra					
					✓									
						1	1	<u> </u>				l		

COURSE CODE	COURSE NAME	Ty/Lb/ ETL	L	T/ S.Lr	P/R	C
EBCS22E24	NETWORK FORENSICS	Ту	3	0/0	0/0	3

UNIT I Technical Fundamentals

9 Hrs

Concepts in digital evidence- challenges- investigative methodology- sources of network based evidence- principles of internetworking-Internet Protocol suite- Evidence acquisition

UNIT II Packet and Statistical Flow Analysis

9 Hrs

Packet analysis - protocol analysis - flow analysis - higher layer traffic analysis - Statistical Flow analysis:- sensors-flow record export protocols- collection and aggregation- analysis tools and techniques - Case study and Tools Analysis: Wire Shark

UNIT III Network Intrusion Detection and Analysis

9 Hrs

 $NIDS/NIPS\ functionality-modes\ of\ detection-types-NIDS/NIPS\ evidence\ acquisition\ -NIPS/NIDS\ interfaces\ -packet\ logging\ -Case\ study\ and\ Tools\ Analysis\ :\ Snort$

UNIT IV Network Devices and Servers

9 Hrs

Sources of Logs-Network log architecture- collecting and analyzing evidence- Switches- routers – firewalls-interfaces-logging - Case study and Tools Analysis: Angry IP Scanner

UNIT V Network Tunnelling and Case Studies

9 Hrs

Tunneling for functionality, confidentiality- covert tunneling- trends in malware evolution-network behavior of malware – future of malware and network forensics - Case study and Tools Analysis : Cuckoo Sandbox

Total Hours: 45

TEXT BOOK:

1. Network Forensics: Tracking Hackers Through CyberSpace Sherri Davidoff, Jonathan Ham Pearson Education 2012

- 1. Introduction to Security and Network Forensics William J. Buchanan Auerbach Publications 2012
- 2. Handbook of Digital Forensics and Investigations, 1st Edition Eoghan Casey ed., Elsevier Academic Press, ISBN 13: 978-0-12-374267-4,.

COURSE	COUR	RSE NA	ME:					-	Γy/Lb/					
CODE: EBCS22E25		DIS	STRIBU	J TED (COMPU	J TING			ETL/IE	L	T/S	S.Lr	P/R	C
	Prereq	uisite: C	Operatin	g Systei	ms				Ту	3	0	/0	0/0	3
L : Lecture T :	Tutoria	al S.Lr	: Super	vised L	earning	P: Pro	ject R:	Rese	arch C: C	redits				
Ty/Lb/ETL/IE	: Theo	ry/Lab/E	Embedde	ed Theo	ry and I	Lab/Inte	ernal Ev	valuat	ion					
OBJECTIVE:														
The students sh														
		d the de					_							
		d comm			-		•							
							uted sys	stems	to design	a new	memo	ry		
COURSE OU							111		C 11	. 1		•		FT 01
CO1									of distril			ing sy	stems	[L2]
CO2			_				_		uted syste	ems[L	3]			
CO3		stand a 1												
CO4		appropr										47		
CO5								he dis	tributed f	ile sys	stem [L	<u> 4</u>]		
Mapping of C		PO2		Progra PO4	m Outo	PO6	POS)	DOS) D(10 T	2010	PO1	1 D	0012
COs/POs CO1	PO1 2	2	PO3 2			1	1	POS	3 PC	19 1	PO10	1	.1 P	012
CO2	2	3	2	2 2	1	1	2					1		$\frac{1}{1}$
CO2	$\frac{2}{3}$	3	3	2	1	1	2					1		1
CO4	3	3	3	2	2	2	1					2		2
CO5	3	3	3	2	2	1	2					1		1
COs / PSOs		PSO1			PSO2			P9	SO3			PS	04	
COS/1505		1501			1502			- 1	303			15	0 4	
CO1		2			3				3			2	2	
CO2		2			3				2			2		
CO3		3			3				3			3		
CO4		3			3				2			3		
CO5		2			3		<u> </u>		3			3	<u> </u>	
3/2/1 Indicates	s Stren	gth Of (Correla	tion, 3	– High,	2- Med	ium, 1-	Low	1			I		
			-											
			cia		é		_							
_			l sc		ctiv		nary	ent	ect					
ory	nce		anc	re	ele	ve	plir	loc	Proj					
Category	Basic Science	Engineering Science	Humanities and social	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project					
\ddot{c}	c S	ieer	unit ce	am	grä	Ele	Ä	ŭ	tics					
	asi	Enginee Science	Humanit Science	ogr	Pr(ven	Tteı	kill	rac'					
1	В	En Sc	Hu Sc	Pr		OF	l I	S	Ъ					

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	С
EBCS22E25	DISTRIBUTED COMPUTING	Ту	3	0/0	0/0	3

UNIT I Fundamentals and Remote Procedure Call

9 Hrs

Introduction to distributed computing system, Different models, Message passing-Introduction, Desirable features of a good message passing system, Issues in IPC, Synchronization, Buffering, Multidatagram, Process addressing, Failure handling, Group communication - Introduction, RPC model, transparency of RPC, Implementing RPC mechanism, Stub generation, RPC messages, Marshalling arguments and results, Sever management, parameter-passing semantics, Call semantics, Communication protocols for RPCs- Lightweight RPC.

UNIT II Distributed Shared Memory and Synchronization

9 Hrs

Introduction, General architecture of DSM systems, Design and implementation issues of DSM, Granularity, Structure of shared memory space, Consistency model, Replacement strategy, Thrashing, Different approaches to DSM, Advantages of DSM, Clock synchronization, Event ordering, Mutual exclusion, Deadlock, Election algorithm.

UNIT III Resource and Process Management

9 Hrs

Introduction, Desirable features of a good global scheduling algorithm, Task assignment approach, Load balancing approach, Load sharing approach, Process migration, Threads.

UNIT IV DFS/DCE Security

9 Hrs

Desirable features of good DFS, File models, File accessing, models, File sharing semantics, File cachingschemes, File replication, Fault tolerance, Atomic Transaction, Design principles, Authentication, Access control, Digital signatures, DCE security service.

UNIT V CONSISTENCY AND REPLICATION

9 Hrs

Introduction - Data-Centric Consistency Models- Client-Centric Consistency Models- Replica Management - Consistency Protocols

Total Hours: 45

TEXT BOOK:

- 1. Pradeep K. Sinha (2012 Reprint) , Distributed Operating System Concepts and Design PHI
- 2. Ajay D. Kshemkalyani ,MukeshSinghal (2008), Distributed computing : principles, algorithms and systems Cambridge University Press

- 1. Andrew S. Tenenbaum (2012), Modern Operating System (3rd ed.) PHI
- 2. Andrew S. Tenenbaum&MaatrenVansteen (2012) Distributed systems: Principles & Paradigms (2nd ed.),PHI
- 3. HagitAttiya And Jennifer Welch (2004) Distributed computing fundamentals, simulations and Advanced Topics (Digitized in 2007) (2nd ed.), Wiley
- 4. Jean Dollimore, Tim Kindberg, And George Coulouris (2005) Distributed Systems: Concepts and Design (4th ed.) Pearson Education

ELECTIVE -IV& V

COURSE CODE:	COUF	RSE NA		E COM	1PUTI	NG			Ty/Lb/ ETL/IE	L	T/S.L	r P/	R	C
EBCS22E26	Prerec	quisite:	Distrib	outed S	ystems	s and A	lgorith	ıms	Ту	3	0/0	0/	0	3
L : Lecture T : Tut	orial S	S.Lr : S	upervis	ed Lear	ning P	: Proje	ct R: F	Resear	ch C: Credi	ts				
T / L/ ETL/I E: Th	eory/La	ab/Emb	edded 7	Theory a	and Lat	/Interr	al Eva	luatio	n					
OBJECTIVE:														
The students should			C T 1	0	,• ,	1 1								
• Understan			_				0.5	,•	1 .	1 1		,•		
							id com	puting	g basics and	a ea	ge com	outing	<u>, </u>	
COURSE OUTCO							1' '		F1 C		FT 13			
CO1									n Edge Com	iputi	ng[L1]			
CO2		stand th												
CO3	•	ze the f			•									
CO4		ate the l					pplicati	ons[L5	5]					
CO5		ze edge												
Mapping of Cours								1	1	_				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8		PO		011	PC	<u>)12</u>
CO1	3	3	2	1	1	1	1	2	2	1	3		1	
CO2	3	3	2	1	1	1	1	2	2	1	3		1	
CO3	3	2	2	1	1	1	1	2	2	1	3		1	
CO4	3	2	3	2	2	2	1	2	2 2	3	1 2		2	
CO5	3	2	3	2	2	2	1	<u> </u>		3				
COs / PSOs		PSO1			PSO2			PS	3O3]	PSO4		
CO1		3			2			,	2			2		
CO2		3			3				1			2		
CO3		3			2			,	3			1		
CO4		3			1				1			2		
CO5	41	3	1 4	2 1	3	3.6.11	1 7		2			3		
3/2/1 Indicates Str	rength	Of Cor	relatio	n, 3 – H	ligh, 2-	Mediu	ım, 1- 1	JOW						
Category	Basic Science	Engineering Science	Humanities and	Program Core	Program	Open Elective	Inter Disciplinary	Skill Component	Practical /Project					
					✓									

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	С
EBCS22E26	EDGE COMPUTING	Ту	3	0/0	0/0	3

UNIT I EDGE COMPUTING DEFINITION AND USE CASES

9Hrs

Introduction to Edge Computing Scenario's and Use cases - Edge computing purpose and definition, Edge computing use cases, Edge computing hardware architectures, Edge platforms, Edge vs Fog Computing, Communication Models - Edge, Fog and M2M

UNIT II IOT ARCHITECTURE AND CORE IOT MODULES

9Hrs

A connected ecosystem, IoT versus machine-to-machine versus, SCADA, The value of a network and Metcalfe's and Beckstrom's laws, IoT and edge architecture, Role of an architect, Understanding Implementations with examples-Example use case and deployment, Case study – Telemedicine palliative care, Requirements, Implementation, Use case retrospective.

UNIT III RASPBERRYPI

9Hrs

Introduction to RaspberryPi, About the RaspberryPi Board: Hardware Layout and Pinouts, Operating Systems on RaspberryPi, Configuring RaspberryPi, Programming RaspberryPi, Connecting Raspberry Pi via SSH, Remote access tools, Interfacing DHT Sensor with Pi, Pi as Webserver, Pi Camera, Image & Video Processing using Pi.

UNIT IV IMPLEMENTATION

9Hrs

Implementation of Microcomputer RaspberryPi and device Interfacing, Edge to Cloud Protocols, MQTT, MQTT publish-subscribe, MQTT architecture details, MQTT state transitions, MQTT packet structure, MQTT data types, MQTT communication formats, MQTT 3.1.1 working example

UNIT V EDGE COMPUTING

9Hrs

Edge computing with RaspberryPi, Industrial and Commercial IoT and Edge, Edge computing and solutions.

Total Hours: 45

TEXT BOOK:

- 1. IoT and Edge Computing for Architects Second Edition, by Perry Lea, Publisher: Packt Publishing, 2020, ISBN: 9781839214806
- 2. Raspberry Pi Cookbook, 3rd Edition, by Simon Monk, Publisher: O'Reilly Media, Inc., 2019, ISBN: 978149204322.

- 1. Fog and Edge Computing: Principles and Paradigms by Rajkumar Buyya, Satish Narayana Srirama, wiley publication, 2019, ISBN: 9781119524984.
- 2. David Jensen, "Beginning Azure IoT Edge Computing: Extending the Cloud to the Intelligent Edge, MICROSOFT AZURE

COURSE	COUR	SE NAI	ME:					T	/T.1. /					
CODE EBCS22E27		C	YBER I	PHYSIC	CAL SY	STEM			y/Lb/ FL/IE	L	T/S.	Lr	P/R	C
	Prereq	uisite: N	Jil						Ty	3	0/0)	0/0	3
L : Lecture T :	Tutoria	l S.Lr	: Superv	ised Lea	arning F	P: Proje	ct R:R	esearch	C: Credit	S				
Ty/Lb/ETL/IE	: Theor	y/Lab/E	mbedded	d Theory	and La	b/Interr	nal Eval	uation						
OBJECTIVES														
The students sh														
		-	_	_	-	-	-		mputatio	_	_			
•						•			sed discr					
_		-	oblems f	for Cybe	er Physic	cal Syste	ems usin	g formal	methods	s, safe	ety assi	uranc	e and	
	y aspect) Q; 1	, '11	1 11									
CO1			_				an mbrysia	aal arvata	na fuona o	2000	mutatia	.m.a1		
CO1		ze tne cn ctive[L4		s in imp	ementin	ig a cybe	er-pnysic	cai syste	m from a	com	putatio	onai		
CO2				dence ti	me real	time sys	eteme wi	th coftw	are-based	1 disc	rete al	ıtoma	ıted	
CO2	contro		uca ana	delise ti	inc rear-	time sys	stellis wi	illi sortw	arc-base	ı uısc	icic at	atoma	iicu	
CO3			ormal me	ethodsin	designir	ngcyber-	physical	systems	: [L5]					
CO4									y assura	nce a	nd seci	uritv		
	aspects			J	<i>j</i>	J I			<i>y</i>					
CO5		eHybrid	Automa	ta Mode	eling[L6]								
Mapping of C							Os)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PC)10	PO1	1 PC	D12
CO1	3	2	3	3	3	3	2	2	2		3	2		2
CO2	3	3	3	3	3	2	2	2	2		2	2		2
CO3	3	2	3	2	3	2	2	2	2		3	2		2
CO4	3	3	2	2							2	2		2
CO5		_	_	_	2	2	2	2	2					
	3	2	3	2	2	2	2	2 2	2		2	2		2
COs / PSOs	3	PSO1	3	2					2				04	
	3	PSO1	3	2	PSO2			PSO:	2			PSO		
CO1	3	PSO1	3	2	PSO2			PSO:	2			PSC 2		
CO1 CO2	3	PSO1 3 3	3	2	PSO2 3 2			PSO: 3 3 3	2			2 PSO 2 2		
CO1 CO2 CO3	3	PSO1 3 3 2	3	2	PSO2 3 2 3			PSO: 3 3 2	2			2 PSC 2 2 2		
CO1 CO2 CO3 CO4	3	PSO1 3 3	3	2	PSO2 3 2			PSO: 3 3 3	2			2 PSO 2 2		
CO1 CO2 CO3		PSO1 3 3 2 3 3 3			PSO2 3 2 3 3 2 2 3 2	2	2	PSO. 3 3 2 3 3 3 3 3	2			2 PSO 2 2 2 2 3		
CO1 CO2 CO3 CO4 CO5	s Streng	PSO1 3 3 2 3 3 3	Correlati		PSO2 3 2 3 3 2 2 3 2	- Mediu	2	PSO. 3 3 2 3 3 3 3 3	2			2 PSO 2 2 2 2 3		
CO1 CO2 CO3 CO4 CO5		PSO1 3 3 2 3 3 3	manities and land ial Science	ion, 3 –	PSO2 3 2 3 3 2 High, 2	- Mediu	2	PSO. 3 3 2 3 3 3 3 3	2			2 PSO 2 2 2 2 3		

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	С
EBCS22E27	CYBER PHYSICAL SYSTEM	Ту	3	0/0	0/0	3

UNIT-I CPS HARDWARE PLATFORMS

9Hrs

Cyber-Physical Systems (CPS) in the real world, Basic principles of design and validation of CPS Processors, Sensors, Actuators, CPS Network, CPS SW stack RTOS, Scheduling Real Time control tasks. Principles of Automated Control Design, Dynamical Systems and Stability, Controller Design Techniques.

UNIT-II STABILITY ANALYSIS

9Hrs

CLFs, MLFs, stability under slow switching, Performance under Packet drop and Noise, From features to software components, Mapping software components to ECUs, CPS Performance Analysis: effect of scheduling, bus latency, sense and actuation faults on control performance, network congestion

UNIT-III FORMAL METHODS FOR SAFETY ASSURANCE OF CYBER-PHYSICAL SYSTEMS 9Hrs

Advanced Automata based modelling and analysis: Basic introduction and examples, Timed and Hybrid Automata, Definition of trajectories, zenoness, Formal Analysis: Flow pipe construction, reachability analysis, Analysis of CPS Software, Weakest Pre-conditions, Bounded Model checking

UNIT-IV HYBRID AUTOMATA MODELLING

9Hrs

Flowpipe construction using Flowstar, SpaceX and Phaver tools, CPS SW Verification: Frama-C, CBMC, Secure Deployment of CPS: Attack models, Secure Task mapping and Partitioning, State estimation for attack detection, Automotive

UNIT-V CASE STUDY 9Hrs

Case study: Vehicle ABS hacking, Power Distribution

Case study: Attacks on Smart grid.

Total Hours: 45

TEXT BOOKS:

- 1.E. A. Lee and S. A. Seshia, "Introduction to Embedded Systems: A Cyber-Physical Systems Approach", 2011.
- 2.R. Alur, "Principles of Cyber-Physical Systems," MIT Press, 2015.
- 3.T. D. Lewis "Network Science: Theory and Applications", Wiley, 2009.

- 1. P. Tabuada, "Verification and control of hybrid systems: a symbolic approach", Springer-Verlag 2009.
- 2. C. Cassandras, S. Lafortune, "Introduction to Discrete Event Systems", Springer 2007.
- 3. Constance Heitmeyer and Dino Mandrioli, "Formal methods for real-time computing", Wiley publisher, 19

COURSE CODE EBCS22E28	COURSE NAME: FOUNDATIONS OF PARALLEL PROGRAMMING	Ty/Lb/ ETL/IE	L	T/S.L r	P/R	С
	Prerequisite: Nil	Ty	3	0/0	0/0	3
	C: Tutorial S.Lr: Supervised Learning P: Proj E: Theory/Lab/Embedded Theory and Lab/Inter			C: Credits	3	
	ES: s should be made to miliarize the issues in parallel computing.					

		miliarize the issues in parallel computing.														
				-	program			мы								
				•		_	_		vith Ope	nMD						
				• •	prograi				-	111711 .						
COURSE O								<u> </u>	⊿.							
CO1	Identi	fy issu	es in pa	arallel ₁	progran	nming	(L2)									
CO2	Devel	lop dist	ributed	l memo	ry prog	grams u	ising M	IPI fran	nework ((L5)						
CO3		n and c MP (L5		shared	d memo	ory para	allel pro	ograms	using Pt	hreads a	ınd usin	g				
CO4	Imple	Implement Graphical Processing OpenCL programs. (L4)														
CO5	Understand the practical parallel programming scenarios and possibilities (L2)															
Mapping of Co	ourse Outcomes with Program Outcomes (POs)															
COs/POs	PO1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12														
CO1	3															
CO2		3 2 2 2 3 3 1 1 1														
CO3	3	3	2	3	3	3	2	1	1	1	1	1				
CO4	3	2	3	3	3	2	3									
CO5	2	2	2	2	3	2	2									
COs / PSOs		PSO1			PSO2			PSO	3		PSO4					
CO1		3			3			3			3					
CO2		3			3			3			3					
CO3		3			3			3			3					
CO4		3			3			2			2					
CO5		3			2			3			3					
3/2/1 Indicates	Streng	th Of Co	rrelatio	on, 3 – H	ligh, 2- l	Medium	, 1- Low	7	T		ı	ı				
Category	Basic Science Engineering Science Humanities and Science Program Core Program Core Open Elective Open Elective Open Elective Practical /Project Practical /Project															
					-											

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.L r	P/R	С
EBCS22E28	FOUNDATIONS OF PARALLEL PROGRAMMING	Ту	3	0/0	0/0	3

UNIT I Foundations Of Parallel Programming

9Hrs

Motivation for parallel programming – Need-Concurrency in computing – Basics of processes, multitasking and threads – cache – cache mappings – caches and programs – virtual memory – Instruction level parallelism – hardware multi-threading – Parallel Hardware-SIMD – MIMD – Interconnection networks – cache coherence –Issues in shared memory model and distributed memory model –Parallel Software- Caveats- coordinating processes/ threads- hybrid model – shared memory model and distributed memory model - I/O – performance of parallel programs-– parallel program design.

UNIT II Distributed Memory Programming WithMpi

9Hrs

Basic MPI programming – MPI_Init and MPI_Finalize – MPI communicators – SPMD- programs– MPI_Send and MPI_Recv – message matching – MPI- I/O – parallel I/O – collective communication – Tree-structured communication -MPI_Reduce – MPI_Allreduce, broadcast, scatter, gather, allgather – MPI derived types – dynamic process management – performance evaluation of MPI programs- A Parallel Sorting Algorithm

UNIT III Shared Memory Paradigm WithPthreads

9Hrs

Basics of threads, Pthreads – thread synchronization – critical sections – busy waiting – mutex – semaphores – barriers and condition variables – read write locks with examples - Caches, cache coherence and false sharing – Thread safety-Pthreads case study.

UNIT IV Shared Memory Paradigm: Openmp

9Hrs

Basics OpenMP – Trapezoidal Rule-scope of variables – reduction clause – parallel for directive – loops in OpenMP – scheduling loops –Producer Consumer problem – cache issues – threads safety in OpenMP – Two- body solvers- Tree Search

UNIT V Parallel Programming

9Hrs

Speed and Efficiency, Overhead and Challenges – **Scientific Computing**: Grid Computations, Particle Computations, Matrix Computations – Case Study of Parallel Programming Libraries in Pthread, MPI and OpenMP – Parallelizing Compilers – Other Parallel Programming Models – Parallel Programming Tools

Total Hours: 45

REFERENCES:

- 1. A. Munshi, B. Gaster, T. G. Mattson, J. Fung, and D. Ginsburg,—OpenCL programming guidel, Addison Wesley, 2011
- 2. M. J. Quinn, —Parallel programming in C with MPI and OpenMPI, Tata McGraw Hill, 2003.
- 3. Peter S. Pacheco, —An introduction to parallel programming, Morgan Kaufmann, 2011.
- 4. Rob Farber, —CUDA application design and developmentl, Morgan Haufmann, 2011.
- 5. W. Gropp, E. Lusk, and A. Skjellum, —Using MPI: Portable parallel programming with the message passing interfacel, Second Edition, MIT Press, 1999
- 6. Greg Andrews ,2000, Foundations of Multithreaded, Parallel, and Distributed Programming. Addison-Wesley, Digitized in 16 Nov 2007, ISBN 0201357526, 9780201357523
- 7. Zbigniew J. Czech, 2016, Introduction to Parallel Computing, Cambridge University Press, ISBN 1316802787, 9781316802786

COURSE	COURSE N	AME:					T	y/Lb/		_	TD/C I	D/I	
CODE		VIR'	TUALI	ZATIO)N		E	TL/IE	,	L	T/S.Lr	P/I	R C
EBCS22E29	Prerequisite		101121		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			Ty		3	0/0	0/0) 3
L : Lecture T : Tu	torial SIr	Superv	ised Lea	rning	P · Proi	ect R ·	Resear		'redits				
Ty/Lb/ETL/IE : T		•		_	·				icuits				
OBJECTIVES:	· · · · · · · · · · · · · · · · · · ·												
The students show	uld be made to)											
	the general co	•			1								
	he design of s												
	stand the virtu	_	_		ls								
	the terminolog												
COURSE OUTC													
CO1	Understand					chines[L	.2]						
CO2	Analyze the												
CO3	Applying vi					admini	stration	[L3]					
CO4	Analyze the	virtual	storage	concep	ts[L4]								
CO5	Understand	the vari	ous virt	ualizati	on tech	niques[L2]						
Mapping of Cour	rse Outcomes	POs)											
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	10 PC	11	PO12
CO1	3	2	2	3	3	3	3	3	3	3		3	2
CO2	3	3	3	2	2	2	2	3	2	3		3	2
CO3	3	2	3	3	3	3	2	2	3	2		2	2
CO4	3	2	3	2	2	2	3	3	2	2		2	2
CO5	3	3	2	2	3	2	2	2	2	3	,	3	2
COs / PSOs	PS	SO1			PSO2			PSO	3		P	SO4	
CO1		3			3			3				3	
CO2		3			3			3				2	
CO3		3			3			3				3	
CO4		3			3			2				3	
CO5		3			3			3				3	
3/2/1 Indicates St	trength Of Co	orrelati	on, 3 –	High, 2	2- Medi	ium, 1-	Low						
							ry	nt	ct				
	8		pu			4)	Inter Disciplinary	Skill Component	Practical /Project				
>	Basic Science	g	s al		я	tive	cipl	npc	Pr				
log	Sci	erii	itie Acie	В	grar]]]])is(Cor	cal				
Category	sic	ine	nan al 9	grai	Program elective	H II	er J	ii (acti				
	Ba	Engineering Science	Humanities and	Program Core	T 4	Open Elective	Int	Sk	Pr				
					~								
					•								

SUBJECT CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	C
EBCS22E29	VIRTUALIZATION	Ту	3	0/0	0/0	3

Unit I Introduction to Virtualization

9 hrs

System Architectures – Virtual Machine Basics – Process Virtual Machines – System Virtual Machines – Taxonomy of Virtual Machines – Emulation: Basic Interpretation – Threaded Interpretation – Pre-Coded and Direct Interpretation – Binary Translation – Full and Para Virtualization – Types of Hypervisors – Types of Virtualizations.

UNIT II Server Consolidation

9 Hrs

Hardware Virtualization – Virtual Hardware Overview - Sever Virtualization – Physical and Logical Partitioning - Types of Server Virtualization – Business cases for Sever Virtualization – Uses of Virtual server Consolidation – Planning for Development – Selecting server Virtualization Platform

UNIT III Network Virtualization

9Hrs

Design of Scalable Enterprise Networks - Virtualizing the Campus WAN Design - WAN Architecture - WAN Virtualization - Virtual Enterprise Transport Virtualization—VLANs and Scalability - Theory Network Device Virtualization Layer 2 - VLANs Layer 3 VRF Instances Layer 2 - VFIs Virtual Firewall Contexts Network Device Virtualization - Data-Path Virtualization Layer 2: 802.1q - Trunking Generic Routing Encapsulation - IPsec L2TPv3 Label Switched Paths - Control-Plane Virtualization—Routing Protocols- VRF - Aware Routing Multi-Topology Routing.

UNIT IV Virtualizing Storage

9Hrs

SCSI- Speaking SCSI- Using SCSI buses – Fiber Channel – Fiber Channel Cables – Fiber Channel Hardware Devices – iSCSI Architecture – Securing iSCSI – SAN backup and recovery techniques – RAID – SNIA Shared Storage Model – Classical Storage Model – SNIA Shared Storage Model – Host based Architecture – Storage based architecture – Network based Architecture – Fault tolerance to SAN – Performing Backups – Virtual tape libraries.

Unit V Applying Virtualization

9 hrs

Comparison of Virtualization Technologies: Guest OS, Host OS, Hypervisor, Emulation, Kernel Level – Shared Kernel – Enterprise Solutions: Vmware Server, ESXi, Citrix Xen Server, Microsoft Virtual PC, Microsoft Hyper-V, Virtual Box – Server Virtualization: Configuring Server with Server Virtualization, Adjusting and Tuning Virtual Servers, VM Backup and Migration – Desktop Virtualization: Terminal Services, Hosted Desktop, Web Based Solutions, Localized Virtualized Desktop – Network and Storage Virtualization: VPN, VLAN, SAN and VSAN, NAS.

Total Hours: 45

Text Books:

- 1. Chris Wolf, Erick M. Halter, "Virtualization: From the Desktop to the Enterprise", APress, 2005.
- 2. James E. Smith, Ravi Nair, "Virtual Machines: Versatile Platforms for Systems and Processes", Elsevier/Morgan Kaufmann, 2005.
- 3. David Marshall, Wade A. Reynolds, "Advanced Server Virtualization: VMware and Microsoft Platform in the Virtual Data Center", Auerbach Publications, 2006.

References:

- 1. William von Hagen, "Professional Xen Virtualization", Wrox Publications, January, 2008.
- 2. Kumar Reddy, Victor Moreno, "Network virtualization", Cisco Press, July, 2006.
- 3. Amy Newman, Kenneth Hess, "Practical Virtualization Solutions: Virtualization from the Trenches", Prentice Hall, October 2009

COURSE CODE: EBCS22			RSE NA FA MO		NIZAT	TION A	NALYS	IS		/Lb/ TL/IE	L	T/S		P/ R	C
		Prereq	uisite: I	NIL						Ty	3	0/	0	0/0	3
L : Lecture	T : Tu	torial	S.Lr : \$	Superv	vised L	earning	P : Proj	ect R	: R	eseard	ch C: C	redits			
Ty/Lb/ETL	/IE : T	heory/I	Lab/Em	bedde	d Theo	ry and	Lab/Inter	nal E	valu	ation					
OBJECTIVI															
The studer															
	-						igence syst	tem							
			eling aspe				elligence he techniqi	100 1100	d in	it					
			ferent dat					ues use	u III I	11					
COURSE O							1								
CO1	Rei	membe	r the fu	ndame	entals o	f busin	ess intelli	igence	e.[L	1]					
CO2							gence[L4								
CO3			ious mo												
CO4	Exp	plain th	e data a	nalys	is and k	knowled	ledge delivery stages.[L2]								
CO5	Exp	plain th	e emerg	ging te	echnolo	gy and	visualiza	tion[]	L2]						
Mapping o	of Cour	rse Out	tcomes	with]	Progra	m Out	comes (P	POs)							
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8		PO9	PO10	PO11	PO)12	
/POs															
CO1	3	2	1	2	3	3	1	2		3	2	3		1	
CO2	3	2	3	2	3	3	2	2		3	2	3		2	
CO3	3	2	2	2	3	3	2	2		3	2	3		2	
CO4	3	3	3	2	3	3	1	2		3	2	3		2	
CO5 COs/PSOs	3	<u>3</u>	2	2	3	3	2	2		3	2	3	<u> </u>	2	<u>, </u>
COS/PSOS		PSO1			PSO2			P	SO3					PSO4	
CO2		$\frac{2}{2}$			3				3					3	
CO2		2			3				3					3	
CO4		3			3				3					3	
CO5		3			3				3					2	
3/2/1 indic	ates St		of Cor	relati		High,	2- Mediu	ım, 1		w					
ory	sience	ring	es and	Core	Program elective		ctive	Inter Disciplinary	Skill Component				Practical /Project		
Category	Basic Science	Engineering	Humanities and social Science	Program Core	Progra		Open Elective	Inter Di	Skill Cc				Practica		
					(/									

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.Lr	P/R	С
EBCS22E30	DATA MODERNIZATION ANALYSIS	Ту	3	0/0	0/0	3

UNIT I BUSINESS INTELLIGENCE

9 Hrs

Effective and timely decisions – Data, information and knowledge – Role of mathematical models – Business intelligence architectures: Cycle of a business intelligence analysis – Enabling factors in business intelligence projects – Development of a business intelligence system – Ethics and business intelligence.

UNIT II KNOWLEDGE DELIVERY

9 Hrs

The business intelligence user types, Standard reports, Interactive Analysis and Ad Hoc Querying, Parameterized Reports and Self-Service Reporting, dimensional analysis, Alerts/Notifications, Visualization: Charts, Graphs, Widgets, Scorecards and Dashboards, Geographic Visualization, Integrated Analytics, Considerations: Optimizing the Presentation for the Right Message.

UNIT III EFFICIENCY

9 Hrs

Efficiency measures – The CCR model: Definition of target objectives- Peer groups – Identification of good operating practices; cross efficiency analysis – virtual inputs and outputs – Other models. Pattern matching – cluster analysis, outlier analysis

UNIT IV BUSINESS INTELLIGENCE APPLICATIONS

9 Hrs

Marketing models – Logistic and Production models – Case studies.

UNIT V FUTURE OF BUSINESS INTELLIGENCE

9 Hrs

Future of business intelligence – Emerging Technologies, Machine Learning, Predicting the Future, BI Search & Text Analytics – Advanced Visualization – Rich Report, Future beyond Technology.

Total Hours: 45

TEXT BOOK:

- 1. Efraim Turban, Ramesh Sharda, DursunDelen, "Decision Support and Business Intelligence Systems", 9 th Edition, Pearson 2013.
- 2. Larissa T. Moss, S. Atre, "Business Intelligence Roadmap: The Complete Project Lifecycle of Decision Making", Addison Wesley, 2003.
- 3. Carlo Vercellis, "Business Intelligence: Data Mining and Optimization for Decision Making", Wiley Publications, 2009.
- 4. David Loshin Morgan, Kaufman, "Business Intelligence: The Savvy Manager"s Guide", Second Edition, 2012.
- 5. Cindi Howson, "Successful Business Intelligence: Secrets to Making BI a Killer App", McGraw-Hill, 2007.
- 6. Ralph Kimball ,Margy Ross , Warren Thornthwaite, Joy Mundy, Bob Becker, "The Data Warehouse LifecycleToolkit", Wiley Publication Inc.,2007

COURSE CODE EBCS22E31	COURSE NAME: ROBOTICS	Ty/Lb/ ETL/IE	L	T/S.L r	P/R	С
	Prerequisite: Nil	Ty	3	0/0	0/0	3

 $L: Lecture \ T: Tutorial \quad S.Lr: Supervised \ Learning \ P: Project \ R: Research \ C: Credits \ Ty/Lb/ETL/IE: Theory/Lab/Embedded \ Theory \ and \ Lab/Internal \ Evaluation$

OBJECTIVES:

The students should be made to

- Expose students to the history and current developments in the field of robotics;
- Strengthen students' grasp of the mathematics and physics involved in the design, construction and control of robots, with a focus on linear algebra and geometry.
- Introduce students to fundamental concepts of electrical and mechanical engineering that will help them better understand the design and development challenges in the field of robotics;

		ter unders													
• Help skills.		develop	and dee	epen the	eir grasj	p of pro	ogramm	ning co	oncepts a	and their	progran	nming			
COURSE OU		IES (COs	s): Stud	lents w	ill be ab	ole to									
CO1	Unders	stand the	fundan	entals	of robo	tics and	l its cor	npone	nts (L1)						
CO2	Unders	stand the	Kinema	atics an	d Dyna	mics of	f roboti	cs (L1)						
CO3	Design	Design related Instrumentation & control in robotics (L5)													
CO4	Implen	Implement the movement of robotic joints with computers/microcontrollers. (L4)													
CO5	unders	understand the use of sensors and instrumentation in robotics (L1)													
	Course (urse Outcomes with Program Outcomes (POs)													
COs/POs	PO1	01 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12													
CO1	3	3 3 3 3 2 3 2 1 2 1 1 1													
CO2		3 3 3 3 3 2 1 1 1 1 1													
CO3	3	3	3	3	3	1	1	2	1						
CO4	3	3	3	3	3	1	1	1							
CO5	3	3	3	3	3	1				1					
COs / PSOs		PSO1			PSO ₂			PSC	3		PSO ₄	ļ.			
CO1		1			1			3			3				
CO2		1			2			3			1				
CO3		1			2			3			2				
CO4		1			2			2			2				
CO5		1			2			3			2				
3/2/1 Indicate	es Stren	gth Of C	orrelat	ion, 3 -	– High,	2- Me	dium, 1	1- Lov	V		_	1			
Category	Basic Science	Engineer ing	Humanities and	Program	Program	Open Elective	Inter Disciplinary Skill Practical /Project								
					✓										

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.L r	P/R	С
EBCS22E31	ROBOTICS	Ту	3	0/0	0/0	3

Unit-1 Introduction 9 hrs

Introduction: Robots, Jobs and Ethics, Representing Position and Orientation: Working in Two Dimensions, Working in Three Dimensions (3D). Advanced Topics, Using the Toolbox, Wrapping Up, Time and Motion: Time-Varying Pose, Accelerating Bodies and Reference Frames, Accelerating Bodies and Reference Frames, Application: Inertial Navigation, Wrapping Up.

Unit-II Mobile Robots 9 hrs

Mobile Robot Vehicles: Wheeled Mobile Robots, Flying Robots, Advanced Topics, Wrapping Up, Navigation: Reactive Navigation, Map-Based Planning, Localization: Dead Reckoning, Localizing with a Map, Creating a Map, Localization and Mapping, Rao-Blackwellized SLAM, Pose Graph SLAM, Sequential Monte-Carlo Localization, Application: Scanning Laser Rangefinder, Wrapping Up.

Unit-III Arm-Type Robots

9 hrs

Robot Arm Kinematics: Forward Kinematics, Inverse Kinematics, Trajectories, Advanced Topics, Applications, Manipulator Velocity: Manipulator Jacobian, Jacobian Condition and Manipulability, Resolved-Rate Motion Control, Under- and Over-Actuated Manipulators, Force Relationships, Inverse Kinematics: a General Numerical Approach, Advanced Topics. Dynamics and Control: Independent Joint Control, Rigid-Body Equations of Motion, Forward Dynamics, Rigid-Body Dynamics Compensation, Applications.

Unit-IV Computer Vision

9 hrs

Light and Color: Spectral Representation of Light, Color, Advanced Topics, Application: Color Image, Image Formation: Perspective Camera, Camera Calibration, Wide Field-of-View Imaging, Unifi ed Imaging, Novel Cameras, Advanced Topics, Images and Image Processing, Image Histograms, Monadic Operations, Diadic Operations, Spatial Operations, Mathematical Morphology, Shape Changing, Image Feature Extraction: Region Features, Line Features, Point Features, Using Multiple Images: Feature Correspondence, Geometry of Multiple Views, Stereo Vision, Bundle Adjustment, Point Clouds, Structured Light, Applications.

Unit-V Robotics, Vision and Control

9 hrs

Vision-Based Control:Position-Based Visual Servoing, Image-Based Visual Servoing, Using Other Image Features, Advanced Visual Servoing: XY/Z-Partitioned IBVS, IBVS Using Polar Coordinates, IBVS for a Spherical Camera, Applications.

Total Hours:45

Text Book:

1. Robotics, Vision and Control, Fundamental Algorithms in MATLAB, "Second, completely revised, extended and updated edition With 492 Images", Peter Corke.

Reference Book:

- 1. Ghosal, A. (2006). Robotics: fundamental concepts and analysis. Oxford university press.
- 2. Corke, P. I., & Khatib, O. (2011). *Robotics, vision and control: fundamental algorithms in MATLAB* (Vol. 73, p. 2). Berlin: Springer

COURS	Е	CC	OURSE I	NAME:				Ty/Lb)		T /				
CODE:								/ETL/	'	L	S.	P/R	C		
EBCS2	22E32]	DEEP L	EARNI	NG TE	CHNIQ	UES	IE			Lr				
					ine Learı			Ту		3	0/0	0/0	3		
L : Lectu										C: Cred	lits				
Ty/Lb/E			ry/Lab/I	Embedde	ed Theor	y and La	ıb/Intern	ıal Evalı	ation						
OBJEC'			l ha ma	do to											
The stud						1	41		4-1:-	£ NJ	1 M.4	1-			
•						_			_		ıral Netwo	rĸ			
•	_		-		ation usi dge in ha		-	-	-		tions				
								yziiig ie	ai woriu	аррпса	tions.				
COURS	E OU	TCOM	IES (CO	Os): Stud	dents wil	l be able	e to								
CO1	Und	erstand	the char	racteristi	ics of dec	ep learni	ng mode	els that a	re usefu	ıl to sol	ve real-wo	rld problei	ns[L2]		
CO2										nets. [L2]					
CO3		•		appropri	ate deep	learning	algorith	nms for a	analyzin	g the data for variety of					
CO4		lems. [1 57.0	•								
		·		-	ng algori					1.177.53					
CO5					evaluate				eloped n	model[L5]					
Mappin COs/PO		ourse (PO1	PO2	PO3	Progran PO4	PO5	mes (PO	PO7	PO8	DOO	DO10	DO11	PO12		
	os	POI	POZ	PO3	PO4	POS		PO/	PU8	PO9	PO10	PO11	PO12		
CO1		3	3	3	3	2	3	2	2	3	3	3	3		
CO2		3	3	3	3	2	3	2	2	3	3	3	3		
								2	Z	3	3	3	3		
CO3		3	3	3	3	1	3	2	2	3	2	3	3		
CO4		3	3	3	3		3								
CO4		3	3	3	3	2	3	2	2	3	2	3	3		
CO5		3	3	3	3	2	3	2	2	3	2	3	3		
										3			3		
COs / P	SOs		01		PSO2			PSO3				PSO4			
CO1			3		3			2				2			
CO2			3		3			3				3			
CO3			3		3			3				3			
CO4			3		3			2				3			
CO5			3	• •	2		3.7.11	3				3			
3/2/1 inc	licates	stren	gth of co	orrelatio	on 3 – I	ligh, 2 –	- Mediu	m, 1 – .	Low	T T T T T T T T T T					
						ve		\ \ \	د ا						
		۵)		р		Program elective		Inter Disciplinary	Skill Component	Practical /Project					
Ì	<u> </u>	Basic Science	bn	Humanities and	ore	ele	ive	ipli	ıodi	Pro					
oto South	28.0	Scie	rin§	ties	CC	.am	ecti	isc	om	al /					
غ خ	Z	ic 5	Engineering	Humanities an	Program Core	ıgo.	Open Elective	r D	11 C	ctic					
		3as	ngi nei:	um	ıgo.	Pr	ben	nte	Skil	<u>Prac</u>					
		-			Pr	1	\overline{C}	I	6 1						

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/S.L r	P/R	С
EBCS22E32	DEEP LEARNING TECHNIQUES	Ту	3	0/0	0/0	3

UNIT I THE FUNDAMENTALS OF DEEP LEARNING and MACHINE LEARNING

9 Hrs

Introduction to Deep Learning – Difference between Deep Learning and machine learning - Evolution of AI and ML: Historical Epochs - Learning algorithms - Maximum likelihood estimation - Building machine learning algorithm - Neural Networks Multilayer Perceptron - Back-propagation algorithm and its variants.

UNIT II NEURAL NETWORKS AND DEPTHS OF DEEP LEARNING

9 Hrs

Representation Learning - Width and Depth of Neural Networks - Activation Functions: RELU, LRELU, ERELU - Unsupervised Training of Neural Networks - Restricted Boltzmann Machines - Auto Encoders - Deep Learning Applications.

UNIT III CONVOLUTIONAL NEURAL NETWORKS

9 Hrs

Architectural Overview - Motivation, Layers, Filters - Parameter sharing - Regularization - Popular CNN Architectures: ResNet, AlexNet - Applications.

UNIT IV SEQUENCE MODELLING -RECURRENT AND RECURSIVE NETS

9 Hrs

Recurrent Neural Networks - Bidirectional RNNs - Encoder-decoder sequence to sequence architectures - BPTT for training RNN - Long Short-Term Memory Networks.

UNIT V GENERATIVE DEEP LEARNING

9 Hrs

LSTMs to synthesize text - Neural Style transfer and applications - Image synthesis with variational auto encoders - Generative Adversarial Networks: What does a GAN look like? - Generator - Discriminator, Generator vs Discriminator - Training GANs.

Total hours:45

TEXT BOOKS

- 1. Ian Goodfellow, YoshuaBengio and Aaron Courville, "Deep Learning", MIT Press, 2017.
- 2. Josh Patterson, Adam Gibson "Deep Learning: A Practitioner's Approach", O'Reilly Media, 2017
- Umberto Michelucci "Applied Deep Learning. A Case-based Approach to Understanding Deep Neural Networks" Apress, 2018.

- 1. Kevin P. Murphy "Machine Learning: A Probabilistic Perspective", The MIT Press, 2012.
- 2. EthemAlpaydin,"Introduction to Machine Learning", MIT Press, Prentice Hall of India, Third Edition 2014.
- 3. Giancarlo Zaccone, Md. RezaulKarim, Ahmed Menshawy "Deep Learning with TensorFlow: Explore neural networks with Python", Packt Publisher, 2017.
- 4. Antonio Gulli, Sujit Pal "Deep Learning with Keras", Packt Publishers, 2017.
- 5. Francois Chollet "Deep Learning with Python", Manning Publications, 2017.

	Т													1
COURSE CODE		SE NAI	ME : E RESC	MIDCE	DI AN	NINC		Ty/L		L	T/S.	$\mathbf{L} \mid \mathbf{J}$	P/R	C
EBCS22E33				JUKCE	I LAN.	MING		ETL/			r			
LDC522L33	Prereq	uisite: N	N11					1	У	3	0/0)	0/0	3
L : Lecture T :	Tutoria	l S.Lr	: Superv	vised Le	arning	P : Proje	ect R:I	Research	n C: Cred	its				
Ty/Lb/ETL/IE		y/Lab/E	mbedde	d Theor	y and L	ab/Inter	nal Eva	aluation	l					
OBJECTIVE														
The students s														
					-		w they a							
									siness dec					
				p a coi	mpany	prosper	by pro	oviding	business	man	agers	with	accui	rate,
	-	d current			Dlannin	a a a ftrr	i	and to o	ntimias b					:
							in furth		ptimize b	usme	ess pro	ocesse	s Acq	luire
COURSE OU							III TUITII	ci cours	CWOIK					
CO1							of ERI	P (I 2)						
									· · · /T	<u></u>				
CO2									cation (L		С.	.•		
CO3		-	•	tem for	the ma	ınageme	ent of ir	ntormat	ion acros	s the	e func	etiona	area	as
	of a b	usiness	(L5)											
CO4	Apply	workir	ng knov	vledge o	of how	data an	d transa	actions	are integ	rated	l in ar	n ERF	syst	em
	to mai	nage the	e sales o	order pr	ocess,	product	ion pro	cess, ar	nd procui	eme	nt pro	ocess.	(L3)	
CO5	to manage the sales order process, production process, and procurement process. (L3) Evaluate organizational opportunities and challenges in the design system within a													
	busine	ess scen	ario (L	6)										
Mapping of C	ourse C	Outcome	es with l	Progran	n Outco	omes (P	Os)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PC)10	PO11	PC	D12
CO1	3	2	2	3	1	2	3	2	3			1		
CO2	3	3	2	1	2	3	2	2	3					2
CO3	3	2	3	3	2	2	3	2	2		2	1		
CO4	3	3	3	2	3	3	2	3	3					2
CO5	2	2	2	3	DGGA	2	2	2	1	<u> </u>		DGG		
COs / PSOs		PSO1			PSO2			PSO	3			PSO	4	
CO1		3			3			3				2		
CO2 CO3		2 2			3 2			2		-		3 3		
CO4		3			3			3 2		+		$\frac{3}{2}$		
CO5		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
3/2/1 Indicate	s Strene		orrelat	ion 3 _	_	2. Medi	 							
5/2/1 Indicate	buch			1011, 5	Iligii, z	Vicui								
	nce		Humanities and social Science			ve ve	5	يد						
_	Basic Science	l .	Humanities an social Science		am	Open Elective	Inter Disciplinary	Skill Component	F					
Category	S	Engineer	unit Sc	Program Core	Program elective	E	Jildi	l Ipoi	Practical /Project					
	—		_ a	Ľ	_ > 5	ı –	· + 0		0.2				1	
ıteg	as	igi	ım zia	Progr Core	Pi Je)er	Inter Disci	Skill Com	rae Pro					

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/ S.Lr	P/R	С
EBCS22E33	ENTERPRISE RESOURCE PLANNING	Ту	3	0/0	0/0	3

UNIT I 9 Hrs

ERP Introduction, Benefits, Origin, Evolution and Structure: Conceptual Model of ERP, the Evolution of ERP, the Structure of ERP

UNIT II 9 Hrs

Business Process Reengineering, Data ware Housing, Data Mining, Online Analytic Processing (OLAP), Product Life Cycle Man-agement (PLM), LAP, Supply chain Management

UNIT III 9 Hrs

ERP Marketplace and Marketplace Dynamics: Market Overview, Marketplace Dynamics, the Changing ERP Market. ERP- Func-tional Modules: Introduction, Functional Modules of ERP Software, Integration of ERP, Supply chain and Customer Relationship Applications

UNIT IV 9 Hrs

ERP Implementation Basics, ERP Implementation Life Cycle, Role of SDLC/SSAD, Object Oriented Architecture, Consultants, Vendors and Employees.

UNIT V 9 Hrs

ERP & E-Commerce, Future Directives- in ERP, ERP and Internet, Critical success and failure factors, Integrating ERP into or-ganizational culture. Using ERP tool: either SAP or ORACLE format to case study

Total Hours: 45

TEXT BOOKS:

- 1. Vinod Kumar Garg and Venkitakrishnan N K, "Enterprise Resource Planning Concepts and Practice", PHI.
- ^{2.} Joseph A Brady, Ellen F Monk, Bret Wagner, "Concepts in Enterprise Resource Planning", Thompson Course Technology

- 1. Alexis Leon, "ERP Demystified", Tata McGraw Hill
- 2. Rahul V. Altekar "Enterprise Resource Planning", Tata McGraw Hill,
- 3. Vinod Kumar Garg and Venkitakrishnan N K, "Enterprise Resource Planning A Concepts and Practice", PHI
- 4. Mary Summer, "Enterprise Resource Planning"- Pearson Education

COURSE	COU	RSE N	AME:					T	'y/Lb/	L	T/	P/R	С
CODE		OI	A NICELY	T. F. C.C		TTN:		E	TL/IE	;	S.Lr		
EBCS22E34	QUANTUM COMPUTING Prerequisite: Nil												
EBC522E54	Prere	quisite	: IN11						Ty	3	0/0	0/0	3
L : Lecture T : Tu	torial	S.Lr:	Super	vised L	earnin	g P:	Project	t R:F	Research	n C: 0	Credits		I.
Ty/Lb/ETL/IE: T	heory/I	Lab/En	nbedde	d The	ory and	Lab/l	nterna	al Eva	luation	l			
OBJECTIVES:													
The students shou													
 Understan 				_			_						
• Remembe	_	-				princi	ples						
Analyze tl													
COURSE OUTC	OMES	S (COs): Stud	lents w	ill be a	able to							
CO1	Unde	rstand	the fur	damer	ntals of	Quan	tum co	mputi	ng and	its A _l	pplication	ons. [L2	2]
CO2	Unde	Understand the fundamentals of Quantum computing and its Applications. [L2] Understand the efficient quantum algorithms for several basic promise problems[L2]								ns[L2]			
CO3	To gain knowledge about quantum computers and their principles[L4]												
CO4	To understand the principles, quantum information and limitation of quantum												
	operations formalizing[L2]												
CO5	To gain knowledge about different quantum error and its correction techniques. [L4]								o [] 4]				
									ina its c	orrec	tion tec	imique	S. [L4]
Mapping of Cour	PO1	PO2	PO3	Progra PO4	IM Ou PO5	PO6	S (POS	PO8	PO9	PO10) PO11	PO	12
COs/POs	3	2	1	1	FU5	1	ru/	rus		POI	POII	PO	
CO1		3			1	1			1	1			3
CO2 CO3	3	3	3	2 2	1	2			1 2	1 1	1		3
CO4	1	2	1	2	2	1	2		4	3	1		1
CO5	2	2	2	2	2	1	1	2	1	3	1		3
COs / PSOs		PSO1	<u> </u>		PSO2	1	1	PSC	1			PSO4	3
CO1		3			2			2	<i>) .</i>			2	
CO2		3			1			1				2	
CO3		2			2			2				3	
CO4		1			2			2				2	
CO5		2			2			2				3	
3/2/1 Indicates St	rength	Of C	orrelat	tion, 3	– Higl	n, 2- N	Iediun	n, 1- L	ow	1			
			30C		Program elective		ïy	nt	ct				
	ĕ		od 8	4	lect	4)	ina	neı	oje				
ory	enc	gı	s aı	ore	n el	tive	zipl	upc	/Pr				
Category	Basic Science	ərir	itie	n C	ran	Jec	Inter Disciplinary	Skill Component	Practical /Project				
Car	sic	ine	lan	ŗrar	rog	n E	er I) [[ıctik				
	Ba	Engineering	Humanities and social	Program Core	Ъ	Open Elective	Int	Ski	Pra				
		Щ	工			C							
					~								

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/ S.Lr	P/R	C
EBCS22E34	QUANTUM COMPUTING	Ту	3	0/0	0/0	3

UNIT I 9 Hrs

FUNDAMENTALS OF QUANTUM COMPUTING: Fundamental Concepts: Introduction and Overview – Global Perspectives – Quantum Bits – Quantum Computation – Quantum Algorithms – Experimental Quantum Information Processing – Quantum Information. Problems on Qubits.

UNIT II 9 Hrs

QUANTUM COMPUTATION: Quantum Circuits – Quantum algorithms, Single Orbit operations, Control Operations, Measurement, Universal Quantum Gates, Simulation of Quantum Systems, Quantum Fourier transform, Phase estimation, Applications, Quantum search algorithms – Quantum counting – Speeding up the solution of NP – complete problems – Quantum Search for an unstructured database. Problems on Boolean functions and Quantum gates

UNIT III 9 Hrs

QUANTUM COMPUTERS: Guiding Principles, Conditions for Quantum Computation, Harmonic Oscillator Quantum Computer, Optical Photon Quantum Computer – Optical cavity Quantum electrodynamics, Ion traps, Nuclear Magnetic resonance.

UNIT IV 9 Hrs

QUANTUM INFORMATIONS: Quantum noise and Quantum Operations – Classical Noise and Markov Processes, Quantum Operations, Examples of Quantum noise and Quantum Operations – Applications of Quantum operations, Limitations of the Quantum operations formalism, Distance Measures for Quantum information. Problems on Measurement

UNIT V 9 Hrs

QUANTUM ERROR CORRECTION AND CRYPTOGRAPHY: Introduction, Shor code, Theory of Quantum Error – Correction, Constructing Quantum Codes, Stabilizer codes, Fault – Tolerant Quantum Computation. Quantum Cryptography-Private Key Cryptography, Privacy Amplification and Information Reconciliation, Quantum Key Distribution, Privacy and Coherent Information, The Security of Quantum Key Distribution. Problems on Quantum error correction and cryptography

Total Hours: 45

TEXT BOOKS:

1. Chris Bernhardt, "Quantum Computing for Everyone", (The MIT Press) Hardcover – Illustrate, September 2020.

- 2. Willi-Hans Steeb; "Problems and Solutions in Quantum Computing and Quantum Information", Yorick Hardy Academic Consulting and Editorial Services (ACES) Private Limited, January 2020
- 3. M.A. Nielsen and I.Chuang, "Quantum Computation and Quantum Information", Cambridge University Press 2010

- 1. Parag K. Lala ,Quantum Computing: A Beginner's Introduction Paperback", McGraw Hill November 2020.
- 2. V. Sahni, "Quantum Computing", Tata McGraw-Hill Publishing company, 2007.
- 3. Nayak, Chetan; Simon, Steven; Stern, Ady; Das Sarma, Sankar, "NonabelianAnyons and Quantum Computation", 2008.

COURSE CODE:	COURSE NAME:	Ty/Lb/ ETL/IE	L	T /	P/R	C
EBCS22E3	SOCIAL NETWORK ANALYSIS	ETE/IE		S.Lr		
5	Prerequisite:Nil	Ty	3	0/0	0/0	3

L:LectureT:Tutorial S.Lr:SupervisedLearning P:Project R:ResearchC:Credits

 $T/L/ETL/IE: Theory/Lab/Embedded Theory and Lab\ Internal\ Evaluation$

OBJECTIVE:

The students should be made to

- Understand the concept of Ontology using Knowledge Representation.

	earn the prediction of Human Behavior in Social Communities.													
								olications.		_				
							ith Matr	ix-Based Re	presei	ntations.				
COURSEO		,												
CO1								ntic applicat						
CO2								other related			4]			
CO3						<u> </u>		dge represei						
CO4								natrix-based					1 57 03	
CO5	Unders	stand the	fundame	ental con	cepts in	analyzin	g the lar	ge-scale data	a that a	are derive	dfrom so	cial netwoi	:ks[L2]	
Mappingot	fCourse	Outcom	eswith F	Program	Outcom	es (POs)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P	O9	PO10	PO11	PO12	
CO1	3	3	2	2	2	3	1	3		3	3	3	2	
CO2	3	2	1	2	2	3	3	1		3	3	3	2	
CO3	3	2	1	3	3	3	2	2		3	3	3	2	
CO4	3	3	2	3	1	3	1	3		2	3	3	2	
CO5	3	2	2	2	1	3	3	3		3	3	3	3	
COs/PSO		PSO1			PSO2			PSO3	3			PSO4		
CO1		3			3			3						
CO2		3			2			3			2 2			
CO3		3			2			3						
CO4		3			1			3						
CO5		3			3			3				2		
3/2/1Indica	atesStre	ngthOfC		ion,3–Hi	igh,2-Me	edium,1-	Low	I	I	T	<u> </u>			
Category	Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project					

COURSE CODE	COURSE NAME:	Ty/Lb/ ETL/IE	L	T/ S.Lr	P/R	С
EBCS22E35	SOCIAL NETWORK ANALYSIS					
		Ту	3	0/0	0/0	3

UNIT I INTRODUCTION

9 Hrs

Semantic Web: Limitations - Development – Web 2.0 + Semantic Web - Social Network analysis: Development - Key concepts and measures - Electronic sources for network analysis: Electronic discussion networks - Blogs and online communities - Webbased networks.

UNIT II KNOWLEDGE REPRESENTATION, MODELLING AND AGGREGATING 9 Hrs

Ontology Representation: Knowledge Representation – Ontology languages for the Semantic Web: RDF and RDF Schema - OWL - Modelling and aggregating social network data: State-of-the-art in network data representation - Ontological representation of social individuals - Ontological representation of social relationships - Aggregating and reasoning with social network data: Representing identity – Reasoning with instance equality.

UNIT III DEVELOPING SOCIAL-SEMANTIC APPLICATIONS-EXTRACTION 9 Hrs

Building Semantic Web applications with social network features: Architecture of Semantic Web applications – Sesame - Elmo – GraphUtil - Flink: Features – System design - Openacademia: Features - System design

UNIT IV PREDICTING HUMAN BEHAVIOR FOR SOCIAL COMMUNITIES

9 Hrs

User data management - Inference and Distribution - Enabling new human experiences - The Social Enabler - Applications - Managing Trust in Online Social Networks: Online Social Networks - Trust in Online Environment - Trust Models Based on Subjective Logic - Trust Network Analysis - Trust Transitivity Analysis

UNIT V Visualizing Social Networks with Matrix-Based Representations

9 Hrs

Social Network Analysis: Graph theory - Centrality - Clustering - Node-Edge Diagrams - Matrix representation - Visualizing online social networks, Visualizing social networks with matrix-based representations - Novel Visualizations and Interactions for Social Networks Exploration: Node-Link Diagrams - Social Network Analysis - Applications - Cover networks - Community welfare - Collaboration networks - Co-Citation networks.

TotalHours:45

TEXTBOOKS:

- 1. Peter Mika, —Social Networks and the Semantic Web, First Edition, Springer 2007.
- BorkoFurht, —Handbook of Social Network Technologies and Applications, 1st Edition, Springer, 2010.

REFERENCEBOOKS:

- 1. John G. Breslin, Alexander Passant and Stefan Decker, —The Social Semantic Web, Springer, 2009.
- 2. GuandongXu, Yanchun Zhang and Lin Li, —Web Mining and Social Networking Techniques and applications, First Edition, Springer, 2011.
- 3. Forouzan B.A., "Data Communications and networking", TMH, 2003.

COURSE CODE	COURSE NAME: NEURO FUZZY COMPUTING	Ty/Lb /ETL/IE	L	T/S.Lr	P/R	С
EBCS22E36	Prerequisite: Nil	Ту	3	0/0	0/0	3

L: Lecture T: Tutorial S.Lr: Supervised Learning P: Project R: Research C: Credits

Ty/Lb/ETL/IE: Theory/Lab/Embedded Theory and Lab Internal Evaluation

OBJECTIVES:

The students should be made to

- To introduce the various learning rules of Neural Networks both supervised and unsupervised.
- To explain the working of error back propagation training algorithm and its use as a mathematical tool for solving problems.
- To provide knowledge on associative memories and their applications.
- To introduce Fuzzy Logic, Fuzzy relations and Fuzzy mathematics
- To introduce the various learning rules of Neural Networks both supervised and unsupervised.

COURSE OUTC	COMES (COs) : Stu	dents w	ill be ab	le to								
CO1	To Unde	erstand the	fundame	ntals of Fu	ızzy set theo	ry (L1)							
CO2					System (L1								
CO3	To Und	erstand the	basics of	Neural Ne	twork and s	upervise	d learning	networks	(L2)				
CO4					ry Networks				Network	s (L5)			
CO5					ence Systems	s and Ap	plications	(L3)					
Mapping of Cour													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	3	3	3	3	2	1	2	1		1	
CO2	3	3	3	3	3	3	2	1	1	1	1		
CO3	3	3	3	2	3	2	2		1	1			
CO4	3	3	2	2	2	2	2						
CO5	3	3	3	2	2	2	2	1					
COs / PSOs		PSO1			PSO2			PSO3			PSO4		
CO1		3		3			3				2		
CO2		3			2			3			2		
CO3		3			2			2			2		
CO4		3			3			3			2		
CO5		3			2			2			2		
3/2/1 Indicates St	trength O	f Correlat	ion, 3 – H	ligh, 2- M	edium, 1- L	ow							
Category	Basic Science	EAngin eering	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical				
					✓								

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/SLr	P/R	C
EBCS22E36	NEURO FUZZY COMPUTING	Ту	3	0	0	3

UNIT I Fuzzy Sets 9Hrs

Introduction – Basic definitions and terminology – Set-theoretic Operations – MF Formulation and Parameterization – MFs of one Dimension - MFs of two Dimension – Derivatives of Parameterized MFs – Fuzzy Complement – Fuzzy Intersection and Union- Parameterized T-norm and T-conorm.

UNIT II Fuzzy Inference System

9Hrs

Extension Principle – Fuzzy Relations – Linguistic variables – Fuzzy If-Then Rules – Composite rule of inference – Fuzzy Reasoning – Mamdani Fuzzy Models – Other variants – Sugeno Fuzzy Models – Tsukamoto Fuzzy Models.

UNIT III Neural Network 9Hrs

Fundamental Concepts – Models of a Neuron – Learning – Supervised Learning – Unsupervised Learning – Reinforcement Learning - Types of activation function – Network Architectures – Adaptive Networks – Backpropagation for Feed forward Networks – Supervised Learning Neural Networks – Perceptrons – Adaline – Backpropagation Multilayer perceptron – Radial Basis Function Networks

UNIT IV Other Neural Networks

9Hrs

Associative Memory Network – Autoassociative Memory Network – Heteroassociative Memory Network – Bidirectional Associative Memory – Hopfield Network - Unsupervised Learning Neural Networks – Competitive learning networks – Kohonen Self-Organizing Networks – Learning Vector Quantization – Adaptive Resonance Theory – Fundamental Architecture.

UNIT V Adaptive Neuro-Fuzzy Inference Systems and Applications

9Hrs

Adaptive Neuro-Fuzzy Inference Systems – ANFIS Architecture – Applications - Non-linear systemIdentification – Channel Equalization – Adaptive Noise cancellation.

Total Hours:45

Text Books

- 1. J.S.R.Jang, C.T. Sun and E.Mizutani, "Neuro-Fuzzy and Soft Computing", PHI / Pearson Education 2004.
- 2. Simon Haykin, "Neural Network, A Comprehensive Foundation", 2nd Edition Pearson Prentice Hall, 2005.
- 3. S.N.Sivanandam and S.N.Deepa, "Principles of Soft Computing", Wiley India Pvt Ltd, 2011.

Reference Books

- 1. George J. Klir and Bo Yuan, "Fuzzy Sets and Fuzzy Logic-Theory and Applications", Prentice Hall, 1995.
- 2. James A. Freeman and David M. Skapura, "Neural Networks Algorithms, Applications, and Programming Techniques", Pearson Edn., 2003.
- 3. Satish Kumar, "Neural Network, A Classroom Approach", Tata McGraw Hill, 2007.

COURSE CODE: EBCS22E37	COURSE NAME AUGMENTED AND VIRTUAL REALITY	Ty/Lb/ ETL/IE	L	T/ S.Lr	P/R	С	
	Prerequisite: Nil	Ty	3	0/0	0/0	3	
L: Lecture T: Tutorial S.Lr: Supervised Learning P: Project R: Research C: Credits							

Ty/Lb/ETL/IE: Theory/Lab/Embedded Theory and Lab Internal Evaluation

OBJECTIVES:

The students should be made to

- Establish and cultivate a broad and comprehensive understanding of this rapidly evolving and commercially viable field of Computer Science
- Understand virtual reality, augmented reality and using them in engineering applications
- Analyza the user engagement Roost in Brand Loyalty, Mobility, Ratter Advertising of products and

	the user t	e user engagement, Boost in Brand Loyalty, Mobility, Better Advertising of products and											
many mo	ore												
COURSE OUT	COMES (C	COs): Studer	nts will	be able	to								
CO1	To under	rstand fundan	nental c	ompute	r vision	, compu	iter grap	hics an	d huma	ın-compi	iter interac	tion	
		es related to					0 1			•			
CO2	To under	rstand geome	tric mo	deling a	nd Virti	ıal envi	ronmen	t[L2]					
CO3		and differen											
CO4	To use v	o use various types of Hardware and software in virtual Reality systems[L3]											
CO5		o implement Virtual/Augmented Reality applications[L3]											
Mapping of Cour		Outcomes with Program Outcomes (POs)											
COs/POs	PO1	O1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12											
CO1	3	3	3	2	3	2	2	2	3	2	3	3	
CO2	3	3	3	2	3	2	2	2	3	2	3	3	
CO3	3	2	3	2	3	2	2	3	2	3	2	2	
CO4	3	2	2	2	3	2	2	2	3	2	3	2	
CO5	3	3	2	2	3	2	2	2	3	2	3	2	
COs / PSOs	PSO1			PSO2				PSO	73		PSO	4	
COSTESOS					1302			1 00	<i>J J</i>		150	•	
CO1		3			3			2			3	T	
									1			7	
CO1		3			3			2	1		3	•	
CO1 CO2		3			3			2	,		3	-	
CO1 CO2 CO3 CO4 CO5		3 3 3 3 3			3 3 2 2			2 2 3	,		3 3 2	-	
CO1 CO2 CO3 CO4	trength O	3 3 3 3 3	1, 3 – H	ligh, 2-	3 3 2 2	n, 1- Lo	DW DW	2 2 3 3	,		3 3 2 2		
CO1 CO2 CO3 CO4 CO5	Basic Science	3 3 3 3 3	Humanities and – Humanities		3 3 2 2 Mediur	ctive	Inter Disciplinary	2 2 3 3 3 3	,		3 3 2 2		

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/ S.Lr	P/R	C
EBCS22E37	AUGMENTED AND VIRTUAL REALITY	Ту	3	0/0	0/0	3

UNIT I -INTRODUCTION TO AR-VR TECHNOLOGIES

9 Hrs

History of VR-The five Classic Components of a VR System-Early Commercial VR Technology-VR Becomes an Industry-Reality, Virtuality and Immersion-VR, AR, MR, xR: similarities and differences between AR and VR -Current trends

UNIT II-COMPUTER GRAPHICS AND GEOMETRIC MODELING

9 Hrs

Introduction, the perspective projection, human vision, stereo perspective projection, Colour theory, Conversion From 2D to 3D, 3D space curves, simple 3D boundary representation& modeling, 3D clipping, Illumination models, Reflection models, Shading algorithms. Geometrical Transformations: Introduction, Modeling transformations, Instances, Picking, Flying, Scaling the VE

UNIT III-VIRTUAL ENVIRONMENT

9 Hrs

Input: Tracker, Sensor, Digital Gloves, Movement Capture, Video-based Input, 3D Menus & 3D Scanner etc. Output: Visual /Auditory / Haptic Devices. Generic VR system: Introduction, Virtual environment, Computer environment, VR technology, Model of interaction, VR Systems-cyber sickness -side effects of exposures to virtual reality environment

UNIT IV- VR ON THE WEB & MOBILE

9 Hrs

JS-pros and cons-building blocks (WebVR, WebGL, Three.js, device orientation events)- frameworks (A-frame, React VR)-Google VR for Android-Scripts, mobile device configuration, building to android-cameras and interaction-teleporting-spatial audio-Assessing human parameters-device development and drivers-Design Haptics

UNIT V-DEVELOPMENT TOOLS AND FRAMEWORKS

9 Hrs

Human factors: Introduction, the eye, the ear, the somatic senses. Hardware: Introduction, sensor hardware, Head-coupled displays, Acoustic hardware, Integrated VR systems. Software: Introduction, Modeling virtual world, Physical simulation, VR toolkits, Introduction to VRML-AR / VR Applications

Total Hours: 45

TEXT BOOKS

- 1. Grigore C. Burdea, Philippe Coiffet, Virtual Reality Technology, Wiley 2016.
- 2. C. Burdea& Philippe Coiffet, "Virtual Reality Technology", Second Edition, Gregory, John Wiley & Sons, Inc., 2008.
- 3. Jason Jerald. 2015. The VR Book: Human-Centred Design for Virtual Reality. Association for Computing Machinery and Morgan & Claypool, New York, NY, USA.

REFERENCE BOOKS:

- 1. Alan B. Craig, Understanding Augmented Reality, Concepts and Applications, Morgan Kaufmann, 2013.
- 2. Alan Craig, William Sherman and Jeffrey Will, Developing Virtual Reality Applications, Foundations of Effective Design, Morgan Kaufmann, 2009.
- 3. John Vince, "Virtual Reality Systems", Pearson Education Asia, 2007.

COURSE	COUR	RSE NA	ME:					Т	y/Lb/	L	T /	P /	R	С
CODE:		KCHAI		INOLO	GY				TL/IE		S.Lr			·
EBCS22E38								1			S.LI			
	Prereq	uisite: N	Vil						Ty	3	0/0	0/	0	3
L : Lecture T	: Tutoria	al S.Lr	: Super	vised L	earning	P : Proj	ect R:	Resear	ch C: Cre	edits		l .		
Ty/Lb/ETL/IE	E: Theor	ry/Lab/F	Embedde	ed Theo	ry and I	Lab Inte	rnal Ev	aluatio	n					
OBJECTIVE	S :				•									
The students	should b	e made	to:											
	stand the													
	e knowle													
 Famili 	ar with fu	uture cur	rencies a	ind to cre	eate own	crypto to	ken							
COLIDGE OF	TTCON4	FG (G() (
COURSE OU								. [7.0]						
CO1	Unders	stand the	function	al/operat	nonal asp	bects of E	Block cha	ain[L2]						
CO2	Apply	Apply the different Consensus Mechanisms[L3]												
CO2	Apply	Apply the different Consensus Mechanisms[L5]												
CO3	Annly	the differ	rent cryn	tocurren	cy for di	fferent ty	nes of d	omain	s[I_3]					
	rippiy	ine differ	ient eryp	tocurren	cy for di	irerent ty	pes or a	Omam	5[L 3]					
CO4	Unders	stand eme	erging ab	stract m	odels for	Blockch	ain Tech	nology	[L2]					
			8 8											
CO5	Design	and anal	lyze the	applicati	ons base	d on Bloo	ckchain [Technol	ogy[L4]					
Mapping of C									1					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	10 P	011	PO	12
CO1	3	3	1	1	1	2	1	1				1		1
CO2	3	3	2	3	3	1	1	2				1		<u>l</u>
CO3	3	3	3	3	3	2	1	2				1		2
CO4	3	3	3	3	3	2	1	1				1		1
CO5	3	3	3	3	3	1	1	1				1	-	1
CO / DCO		DCO1			DCOA			DCC	\ <u>\</u>			2004		
COs / PSOs		PSO1			PSO2			PSC)3		1	PSO4		
CO1										3				
		2			1			1				3		
CO2		3			1 2			2				2		
CO2 CO3		3 3			2 2			3				3		
CO2 CO3 CO4		3 3 3			2 2 3			2 3 2				2 3 3		
CO2 CO3 CO4 CO5		3 3 3 3			2 2 3 3			2 3 2 3				3		
CO2 CO3 CO4	s Stren	3 3 3 3	Correla	tion, 3	2 2 3 3	2- Med	ium, 1-	2 3 2 3				2 3 3		
CO2 CO3 CO4 CO5	es Stren,	3 3 3 3			2 2 3 3 - High,	2- Medi		2 3 2 3 Low				2 3 3		
CO2 CO3 CO4 CO5 3/2/1 Indicate)e	3 3 3 gth Of (2 2 3 3 - High,			2 3 2 3 Low	ical sct			2 3 3		
CO2 CO3 CO4 CO5 3/2/1 Indicate)e	3 3 3 3 gth Of (anities ocial		2 2 3 3 - High,		plina	3 2 3 Low	actical roject			2 3 3		
CO2 CO3 CO4 CO5	Basic Science	3 3 3 gth Of (anities ocial		Program Program Gettive Gettive		Inter mi Disciplina	2 3 2 3	Practical /Project			2 3 3		

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/ S.Lr	P/R	C
EBCS22E38	BLOCK CHAIN TECHNOLOGY	Ту	3	0/0	0/0	3

UNIT I 9 Hrs

Introduction: Defining Blockchain and Distributed Ledger, Blockchain Properties Decentralized, Transparent, Immutable and secure. Blockchain Applications. Types of Blockchain: Public, private, and consortium based blockchain, When to use, and when not to use Blockchain, History of Blockchain. Peer to Peer Network, P2P network for blockchain

UNIT II 9 Hrs

Blockchain Data Structure, Characteristics and Consensus Mechanisms - Cryptographic Hash Functions, Digital Signatures, Public Keys as Identities, Hash Pointers and Hash chain and Merkel tree, Consensus mechanisms-Decentralized Identity management, Transactions, incentivising and mining. Distributed Consensus (PoW),.-Proof of storage, proof of stake, proof of deposit, proof of burn, proof of activity. algorithms for adjusting difficulty and retargeting.

UNIT III 9 Hrs

Bit Coin: Cryptocurrency as the first blockchain application. Mechanics of Bitcoin, Bitcoin Scripts, Storing and Using Bitcoins, Mining in Bitcoinhardness of mining - transaction verifiability - anonymity - forks - double spending - mathematical analysis of properties of Bitcoin Limitations of Bitcoin, alternative cryptocurrencies.

UNIT IV 9 Hrs

Smart Contracts and EthereumHistory, Purpose and types of smart contracts, Introduction to Ethereum, bitcoin vs Ethereum stack. P2P network in Ethereum, consensus in Ethereum, scripts in Ethereum, Smart contracts (Ethereum Virtual Machine). Developing and executing smart contracts in Ethereum. State and data structure in Ethereum.

UNIT V 9 Hrs

Private and Consortium based Blockchain: Hyperledger-Need for the consortium. Hyperledger stack, Multichainblockchain. Innovation in Hyperledger, smart contracts, and distributed applications in hyperledger **Case studies/ Enabling Technologies and applications-**Application of blockchain in privacy and security, IoT and smart cities, Business and Industry, Data management, e-Governance

Text Books:

Andreas M. Antonopoulos and Dr. Gavin Wood "Mastering Ethereum Building Smart Contracts and DApps"
 O"Reilly, Copyright 2019

Total Hours: 45

- 2. Melanie Swan ,"Blockchain: Blueprint for a New Economy "Copyright 2015 Melanie Swan
- 3. Imran Bashir," Mastering Blockchain: Deeper insights into decentralization, cryptography, Bitcoin, and popular Blockchain frameworks "
- 4. Imran Bashir, "Mastering Block Chain: Distributed Ledger Technology, Decentralization and SmartContracts Explained", Packt Publishing, first edition 2012

ReferenceBooks:

1. Ritesh Modi, "Solidity Programming Essentials: A Beginner"s Guide to Build Smart Contracts for Ethereum and Block Chain", PacktPublishi

COURSE CODE: EBCS22E39	COURSE NAME: MOBILE COMMERCE	Ty/Lb/ ETL/IE	L	T/ S.Lr	P/R	С
	Prerequisite: NIL	Ty	3	0	0	3

L: Lecture T: Tutorial S.Lr: Supervised Learning P: Project R: Research C: Credits

Ty/Lb/ETL/IE: Theory/Lab/Embedded Theory and Lab /Internal Evaluation

OBJECTIVES:

The students should be made to

- Help businesses target customers according to their location, service provider, the type of device they use and various other criteria. This can be a good marketing tool.
- Understand the basic concepts and technologies used in the field of management information systems Have the knowledge of the different types of management information systems
- Understand the processes of developing and implementing information systems
- Case Study to implement m commerce

		COs):	Studen	ts will b	a abla i	- 0							
	dore	derstand the importance of E-commerce[L2]											
	nalyze the importance of M-commerce[L4]												
CO2	alyz	the in	mportai	nce of N	1 -comn	nerce[L	4]						
CO3 Uı	ders	stand th	ne techn	ologies	used ir	M-Co	mmerce	e[L2]					
	plem	nenting	g theory	and ap	plicatio	ns of M	-Comn	nerce[L3]					
		ative implementingonBusiness models[L6]											
	utcomes with Program Outcomes (POs)												
COs/POs PO)1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1		1	1	2	1	2	2	1	1	1	2	1	
CO2		1	1	2	1	2	2	1	1	1	2	1	
CO3		2	1	3	2	3	3	1	2	1	3	2	
CO4 2		2	2	3	2	3	3	2	2	2	3	2	
CO5 2		3	2	3	1	3	3	2	3	2	3	1	
COs / PSOs]	PSO1			PSO2			PSO3			PSO4	ļ	
CO1		3			2			2			2		
CO2		3			1			1			2		
CO3		2			2			2			3		
CO4		1			2			2			2		
CO5		2			2			2			3		
3/2/1 Indicates Streng	th O	of Cor	relatio	1, 3 – H	igh, 2-	Mediu	m, 1- L	ow					
Category	Dasic Science	Engineering Science	Humanities and	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Fractical /Project				

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/ S.Lr	P/R	C
EBCS22E39	MOBILE COMMERCE	Ту	3	0/0	0/0	3

UNIT I INTRODUCTION OF E- COMMERCE

9Hrs

Traditional commerce and E-commerce – Internet and WWW – Role of WWW – Value Chains – Strategic Business And Industry Value Chains – Role of E-commerce. Packet Switched Networks – TCP/IP Protocol Script – Internet Utility Programmers – SGML, HTML And XML – Web Client and Servers – Web Client/Server Architecture – Intranet And Extranets – Web Based Tools For E-commerce – Security.

UNIT II STRUCTURE OF M-COMMERCE

9Hrs

Introduction – Infrastructure of M–Commerce – Types of Mobile Commerce Services – Technologies Of Wireless Business – Benefits And Limitations, Support, Mobile Marketing & Advertisement, Non–Internet Applications In M–Commerce – Wireless/Wired Commerce Comparisons.

UNIT III TECHNOLOGY TO DEVELOP MOBILE COMMERCE

9Hrs

A Framework for The Study of Mobile Commerce – Wireless Devices For Mobile Commerce – Towards A Classification Framework For Mobile Location Based Services – Wireless Personal And Local Area Networks – The Impact Of Technology Advances On Strategy Formulation In Mobile Communications Networks.

UNIT IV MOBILE COMMERCE: THEORY AND APPLICATIONS 9

9Hrs

The Ecology of Mobile Commerce – The Wireless Application Protocol – Mobile Business Services – Mobile Portal – Factors Influencing The Adoption of Mobile Gaming Services – Mobile Data Technologies And Small Business Adoption And Diffusion – E–commerce in The Automotive Industry. Case Studies in implementing mobile commerce: finance, retail, telecommunication, healthcare, information technology, sales and services.

UNIT V BUSINESS- TO- BUSINESS E & M COMMERCE

9Hrs

Enterprise Enablement – Email and Messaging – Field Force Automation (Insurance, Real Estate, Maintenance, Healthcare) – Field Sales Support (Content Access, Inventory) – Asset Tracking and Maintenance/Management – Remote IT Support – Customer Retention (B2C Services, Financial, Special Deals) – Warehouse Automation – Security

TEXT BOOKS:

Total Hours: 45

- 1. E.BrianMennecke, J.Troy Strader, "Mobile Commerce: Technology, Theory and Applications", Idea Group Inc., IRM press, 2003.
- 2. Ravi Kalakota, B.AndrewWhinston, "Frontiers of Electronic Commerce", Pearson Education, 2003

REFERENCE BOOKS:

- 1. P. J. Louis, "M-Commerce Crash Course", McGraw-Hill Companies February 2001.
- 2. Paul May, "Mobile Commerce: Opportunities, Applications, and Technologies Of Wireless Business" Cambridge University Press March 2001.

COURSE CODE: EBCS22E40	COUI	RSE NA		TIME	SYSTE	MS			Lb/ L/IE	L	T S.l		P/R	C
	Prereq	uisite: N	IIL					7	Гу	3	0/	/0	0/0	3
L : Lecture T :			•		_				Credit	s				
T/L/ETL/IE:		_ab/Emb	edded T	heory a	nd Lab/	Internal	Evaluati	ion						
OBJECTIVE														
The students														
	ime sche													
					f timing	constrai	ints and pi	roperties						
	n method				II baabi	la 4 a								
COURSE OU							(T.1)							
CO1							tem (L1)		4)					
CO2	•						ling algor					2)		
CO3							es and too	ols for re	al time	syste	ms (L	.3)		
CO4 CO5		ze the pr				_	~ (I_6)							
Mapping of C		y the so												
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P()10	PO11	P	D12
CO1	3	3	1	1	1	1	1	1	1	1	710	1	1	<i>)</i> 12
CO2	3	3	2	3	1	1	2	1	1	1		1	1	
CO3	3	3	2	3	3	1	2	1		1		1		
CO4	2	3	2	3	2	1	2	1						
CO5	2	2	3	2	3	1	2		1					
COs / PSOs		PSO1			PSO2			PSO3				PSC)4	
CO1		3			3			2				1		
CO2		3			3			2				2		
CO3		3			3			3				2		
CO4		3			3			3				2		
CO5		3		<u> </u>	3		<u> </u>	3				2		
H/M/L indica	tes Stre	ngth of (Correla	tion H	l- High,	M- Med	dium, L-I	_ow				1		
Category	Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Comnonent Practical /Project						
					✓									

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/ S.Lr	P/ R	С
EBCS22E40	REAL TIME SYSTEMS	Ty	3	0/0	0/0	3

UNIT I Introduction, Task Assignment and Scheduling 9 Hrs

Architecture of real time systems/embedded systems-operating systems issues-performance measures-estimating program run times- Uniprocessor scheduling-IRIS tasks-task assignment algorithms- mode changes –fault tolerance scheduling.

UNIT II Programming Languages and Tools

9 Hrs

Desired characteristics based on ADA-data typing-control structures-packages-exception handling-overloading-multitasking-timing specification-task scheduling-just in time compilation-run time support.

UNIT III INTERTASK COMMUNICATION AND MEMORY MANAGEMENT 9 Hrs

Buffering data – Time relative Buffering- Ring Buffers – Mailboxes – Queues – Critical regions – Semaphores – other Synchronization mechanisms – deadlock – priority inversion – process stack management – run time ring buffer – maximum stack size – multiple stack arrangement – memory management in task control block - swapping – overlays – Block page management – replacement algorithms – memory locking – working sets – real time garbage collection – contiguous file systems.

UNIT IV Real Time Databases, Fault Tolerance, Reliability and Synchornization 9 Hrs

Basic definitions-main memory databases -transaction processing-concurrency control-disk scheduling algorithms-serialization and consistency-real time communication-

UNIT V Fault Tolerance, Reliability and Synchornization

9 Hrs

Fault types-fault detection and containment-redundancy-data diversity-reversal checks-obtaining parameter values-reliability models for hardware redundancy-software error models-clocks-fault tolerance synchronization-synchronization and software.

Total Hours: 45

TEXT BOOK:

1. C.M.Krishna, Kang.G.Shin, 2010, Realtime Systems, McGraw Hill.

REFERENCE BOOKS:

- 1. Rajib Mall, 2007 "Real-time systems: theory and practice", Pearson Education.
- 2. Phillip A.Laplante 2011 Real Time System Design and Analysis, 4 thedition, Wiley.
- 3. Alan burns and andy wellings, 2009 "Real time systems and prog. Languages", 4 thedition, pearson.

COURSE CODE	COURSE NAME: OPTIMIZATION TECHNIQUES	Ty/Lb/ ETL/IE	L	T/ S.Lr	P/R	С
EBCS22E41	Prerequisite: NIL	Ту	3	0/0	0/0	3

L: Lecture T: Tutorial S.Lr: Supervised Learning P: Project R: Research C: Credits

Ty/Lb/ETL/IE: Theory/Lab/Embedded Theory and Lab /Internal Evaluation

OBJECTIVES:

The students should be made to

- Operation research models using optimization techniques based upon the fundamentals of Engineering mathematics (minimization and Maximization of objective function).
- The problem formulation by using linear, dynamic programming, game theory and queuing models.
- The stochastic models for discrete and continuous variables to control inventory and simulation of manufacturing models for the production decision making.
- Formulation of mathematical models for quantitative analysis of managerial problems in industry

COURSE OU'	TCOME	S (COs)	Student	s will be	able to							
CO1	Unders	stand Lin	ear algeb	ra and m	atrices, E	lements o	f probabil	ity theory-	Elementa	ry multiv	ariable ca	lculus
CO2	Apply	the theor	etical for	undations	of variou	ıs issues r	elated to 1	inear progi	amming	modeling	to	
	formul	ate real-v	world pro	blems as	a L P mo	del						
CO3	Unders	stand Und	constrain	ed optim	ization							
CO4	Unders	stand con	strained	optimiza	tion							
CO5	Analy	ze Non-	linear co	onstraine	ed optimi	zation m	odels					
Mapping of C	ourse Outcomes with Program Outcomes (POs)											
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	3	2	3	2	3	2	2
CO2	3	3	3	3	3	3	2	2	2	3	2	2
CO3	3	2	2	2	3	1	2	3	2	3	2	2
CO4	3	3	2	2	3	2	2	2	3	2	2	2
CO5	3	2	3	2	2	2	2	3	2	2	2	3
COs / PSOs		PSO1			PSO2			PSO3			PSO4	
CO1		3			3			3			2	
CO2		3			2			3			2	
CO3		3			2			2			3	
CO4		3			3			3			2	
CO5		3			2			2			2	
3/2/1 Indicates	Strengt	h Of Co	rrelation	, 3 – Hig	gh, 2- Med	dium, 1- l	Low					
Category	Basic Science	Engineering Science	Humanities and social	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project			
					✓							

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/SLr	P/R	С
EBCS22E41	OPTIMIZATION TECHNIQUES	Ту	3	0/0	0/0	3

UNIT- I 9Hrs

Mathematical preliminaries

Linear algebra and matrices-Vector space, eigen analysis-Elements of probability theory-Elementary multivariable calculus

UNIT-II 9Hrs

Linear Programming

Introduction to linear programming model - Simplex Method-Duality-Karmarkar's method

UNIT-III 9Hrs

Unconstrained optimization

One-dimensional search methods - Gradient-based methods - Conjugate direction and quasi-Newton methods

UNIT-IV 9Hrs

Constrained Optimization

Lagrange theorem-FONC, SONC, and SOSC conditions

UNIT-V 9Hrs

Non-linear problems

Non-linear constrained optimization models- KKT conditions -Projection methods

Total Hours:45

Reference Books:

- 1. An introduction to Optimization by Edwin P K Chong, Stainslaw Zak
- 2. Nonlinear Programming by Dimitri Bertsekas

COURSE	COLI	RSE NA	A NATE .												1
CODE: EBCS22E42				GUAG	E PRO	OCESS!	ING		y/Lb/ ETL/		L	T S.I		P/R	C
	Prerec	uisite:	Nil						TY		3	0/	0	0/0	3
L : Lecture T			•			_					Crec	lits			
T/L/ETL/IE:		/Lab/E1	mbedde	d Theo	ry and l	Lab/ Int	ternal E	Eval	uatio	n					
OBJECTIV															
The students															
							eory of		tural	Langi	uage	Pro	cessir	ng	
							ocessii	ng							
	ndersta														
							ces and		igma	tics					
• To ap	oply the	e NLP	technic	ques in	practio	cal app	lication	ıs							
COURSE OU	ITCON	MES (C	(20°)	Students	will be	able to	`								
CO1		,					of Nat	ural	Lane	วเเลงค	Proc	essi	ng (I	2)	
CO2		n and					orriac	urur	Dang	<u>saage</u>	1100	0001	ng (L	<u></u>	
CO3							e morp	holo	gy/s	vntax	of a	lang	uage	(L4)	
CO4							l proce								
CO5							for pro								
Mapping of (Course	Outcor	nes wit	h Prog	ram O	utcome	s (POs))							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PC	8	PO9	PC	10	PO1	1 P	O12
CO1	2	3	1	2	2	1	1			2		2	1		
CO2	3	3	1	1	3	1	1			2		3			
CO3	2	3	3	2	2	1	1		1	2		1			1
CO4	2	3	3	3	3	2	2		2		1	1			
CO5	3	2	3	3	2	1	1		1		<u> </u>		1		1
COs / PSOs		PSO1			PSO2			P	SO3				PSC	<i>)</i> 4	
CO1		3			3				2				2		
CO2		3			3				3				1		
CO3		2			3				2				2		
CO4 CO5		3			2 2				3				2		
3/2/1 Indicate	oc Stroi		Corro	lation	_	rh 2- N	[[adium	1_1	-						
3/2/1 Huicau		igui Oi	Corre	lauon,	3 – IIIg	311, <i>2</i> - 1V	Carain	, 1-	LUW						
Category	Basic Science	Engineering Science	Humanities and social	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project						

COURSE CODE	COURSE NAME	Ty/Lb/ ETL/IE	L	T/ S.Lr	P/R	С
EBCS22E42	NATURAL LANGUAGE PROCESSING	Ty	3	0/0	0/0	3

UNIT I – Introduction 9 Hrs

Origins and challenges of NLP – Language Modeling: Grammar-based LM, Statistical LM - Regular Expressions, Finite-State Automata – English Morphology, Transducers for lexicon and rules, Tokenization, Text Normalization, Detecting and Correcting Spelling Errors, Minimum Edit Distance

UNIT II – Word Level Analysis

9 Hrs

Unsmoothed N-grams, Evaluating N-grams, Smoothing, Kneser –Ney Smoothing, Huge Language model and Back off – Word Classes, Part-of-Speech Tagging, Rule-based, Named Entities and Named Entity Tagging, Issues in PoS tagging – Hidden Markov and Maximum Entropy models, Evaluation of Name Entity Recognition.

UNIT III – Syntactic Analysis

9 Hrs

Context-Free Grammars, Grammar rules for English, Treebanks, Normal Forms for grammar – Lexicalized Grammars, Dependency Grammar – Syntactic Parsing, Ambiguity, CKY Dynamic Programming parsing – Span Based Neural Constituency Parsing, Evaluating Parsing – Dependency Relations, Dependency Formalisms, Transaction based Dependency Relations, Graph Based Dependency Relations

UNIT IV-Semantics and Pragmatics

9 Hrs

Requirements for representation, First-Order Logic, Description Logics – Word Senses, Relations between Senses, Word Sense Disambiguation, The WSD Algorithm and Tasks, Word Sense Induction. Semantic Roles, Problem with Thematic Roles, Semantic Role Labeling, Selectional Restrictions.

UNIT V - DISCOURSE ANALYSIS AND LEXICAL RESOURCES

9 Hrs

Coherence Relations, Discourse Structure Parsing, Centering and Entity based Coherence – Reference Phenomena, Anaphora Resolution using Hobbs and Centering Algorithm

Resources: Porter Stemmer, Lemmatizer, Penn Treebank, Brill's Tagger, WordNet, PropBank, FrameNet, Brown Corpus, British National Corpus (BNC).

Total Hours:45

EXT BOOKS:

- 1. Daniel Jurafsky and James H Martin, "Speech and Language Processing", 3e, Pearson Education, 2020...
- 2. Steven Bird, Ewan Klein and Edward Loper, —Natural Language Processing with Python^{||}, First Edition, O_Reilly Media, 2009.

REFERENCES

- 1. Breck Baldwin, —Language Processing with Java and LingPipe Cookbook, Atlantic Publisher, 2015.
- 2. Richard M Reese, —Natural Language Processing with Javal, O Reilly Media, 2015.
- 3. Nitin Indurkhya and Fred J. Damerau, —Handbook of Natural Language Processing, Second Edition, Chapman and Hall/CRC Press, 2010.
- 4. Tanveer Siddiqui, U.S. Tiwary, —Natural Language Processing and Information Retrievall, Oxford University Press, 2008

Open Electives Offered to Other Departments Except Department of IT

COURSE | COURSE NAME: | Ty/Lb/ | L | T / | P/

COURSE	C	JUKSE	INAME	•				I y	LD/	L	1 /	P/	
CODE:		CYBEI	R SECUI	RITY A	ND FO	PRENS	ICS	ET	L/IE		S.Lr	R	
EBCS22OE1	Pr	erequisi	te: Nil					Ту		3	0/0	0/0	3
L : Lecture T	: Tutor	rial S.l	Lr : Supe	rvised l	Learnin	g P:P1	roject R	R : R	esearch C: C	Credits			
T/L/ETL/IE	: Theor	y/Lab/E	mbedded	l Theor	y and L	ab /Inte	ernal Ev	valu	ation				
OBJECTIV													
The students				C 1									
•			Basics o	-		c		•,					
•			and the in				on secu	rity.					
•			how to n and the o				o o unity						
									ollection and	dinforn	nation pr	otectic	nn .
	102	ionity to	WOIK W.	iui uigi	tai evid	chee, m	TOTTIALI	on co	onection and	a miom	nation pr	oteen	<i>/</i> 11.
COURSE O	UTCO:	MES (C	COs): Stu	ıdents	will be	able to							
CO1	Under	stand th	e fundan	nental o	f Cyber	crime[I	L2]						
CO2	Under	stand th	e infrastr	ructure	and info	ormatio	n securi	ty[L	2]				
CO3	Analy	ze and r	nanage tl	ne risk[L4]								
CO4	Under	stand al	out the c	ompute	er secur	ity and	how to	acce	ss on it[L2]				
CO5									nation prote	ction co	oncepts[I	L3]	
Mapping of	Course	Outco	mes with	Progr	am Ou	tcomes	(POs)						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO	8 PO9	PO10	PO1	1 PC)12
CO1	3	2	2	1	1	1	1		1	2	1	1	
CO2	3	3	1	3	2	1	1		1	2	1	1	
CO3	3	3	1	3	2	1	1		2	2	1	2	
CO4	3	2	1	2	3	1	1		3	2	1	2	
CO5	3	3	1	3	2	1	1		1	2	1	1	
COs /PSOs	PS	O1	PSC)2	PS	03	PS	04	PS	SO5		PSO6	
CO1	3		2		1		2		1		1		
CO2	3		1		1		1		1		1		
CO3	3		2		1		1		1		1		
CO4	3		3		1		2		2		2		
CO5	3		3		1		1		1		1		
H/M/L indic	ates St	rength	of Corre	lation	H- Hi	gh, M-	Mediu	m, L	-Low	_			
			pr		ive		Inter Disciplinary	440	ect				
	Basic Science	gı	Humanities and social Science	Program Core	Program elective	Open Elective	plir	}	Practical /Project				
Category	cie	Engineering Science	iitie Šcie	m C	m e	lec	isci	,	al /				
ıteg	ic S	ine ince	nan al S	graı	graı	n E	r D	711	ctic				
C_3	Bas	Enginee: Science	Hur soci	Pro	Pro.	Ope	 [nte	C1.:11	Pra				
						~			. 1				

Course Code	Course Title	Ty/Lb/ ETL/IE	L	T / S.Lr	P/ R	С
EBCS22OE1	CYBER SECURITY AND FORENSICS	Ту	3	0/0	0/0	3

UNIT I: Cyber Crime and Computer Crime

9 Hrs

Cybercrime - Computer Intrusions and Attacks (Unauthorized Access) Computer Viruses, Time Bombs, Trojans, Malicious Code (Malware), Online Fraud and Identity Theft; introduction to internet crimes, hacking and cracking, credit card and ATM frauds, web technology, cryptography, emerging digital crimesand modules.

UNIT II: Information security

9 Hrs

Information Security- The SDLC, The Security SDLC; Risk Management

UNIT III: SECURITY INVESTIGATION

9 Hrs

Need for Security, Business Needs, Threats, Attacks, Legal, Ethical and Professional Issues - An Overview of Computer Security - Access Control Matrix, Policy-Security policies, Confidentiality policies, Integrity policies and Hybrid policies

UNIT IV: Information Welfare

9 Hrs

Information Warfare, Cyber terrorism, and Hacktivism, Terrorism, Radicalization, and The War of Ideas, Trade Secret Theft and Economic Espionage, National Security.

UNIT V: Data Prevention

9 Hrs

Desktop Security, Data and file Security, Network resources Security, Firewall, Mobile data Security.

Total Hours: 45

Text Books

- 1. David J. Loundy, COMPUTER CRIME, INFORMATION WARFARE, AND ECONOMIC ESPIONAGE, Carolina Academic Press (2003) (ISBN:0890891109).
- 2. Jack Balkin, et al. eds., CYBERCRIME: Digital Cops in a Networked World (NYU Press 2007) (ISBN:0814799833).
- 3. Michael E Whitman and Herbert J Mattord, —Principles of Information Security, Vikas Publishing House, New Delhi, 2003

Reference books

- 1. Hacking for Dummies by by Kevin Beaver Published by Wiley Publishing, Inc. 2004
- 2. Kenneth C.Brancik "Insider Computer Fraud" Auerbach Publications Taylor & Francis Group-2008.
- 3. AnkitFadia" Ethical Hacking" second edition Macmillan India Ltd, 200

COURSE CODE:			NAME TIFICIA		ELLIC	GENCI	E		y/Lb TL/]		L	T / S.Lr	P/ R	C
EBCS22OE2		erequisi	te: Nil					T	v		3	0/0	0/0	3
L : Lecture T				anvisad	Loorni	na Dil	Project			arah C				
T/L/ETL /IE			•			•	•				Credit	S		
OBJECTIVE OBJECTIVE		y/Lau/L	inbedde	u Theo.	i y anu i	Lau/ III	ternar i	_va.	luat	OII				
The students		l be mad	de to											
			epts of A	rtificial	Intelli	gence.								
	-		ods of so			-	Artific	ial I	ntell	igence.				
•]	Γo knov	v the va	rious ap	plicatio	ns of A	Ι								
COURSE O	UTCO	MES (COs): St	udents	will be	able to								
CO1			oncept o											
CO2	Under	stand a	nd analy	ze the p	roblem	and fir	nd a sol	utio	n us	ing Artit	ficial Ir	telliger	ce[L2]]
CO3			asic kno											
CO4			principles					re p	robl	em solvi	ing, info	erence,	percep	tion,
G0.			presenta											
CO5			are agen											
Mapping of												1504		
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PC)8	PO9	PO10	-	1 PC	<u> </u>
CO1 CO2	3	3	1	3	2	1	1			1	2	1 1		1 1
CO2	3	2	2	1	1	1	1			1	2	1		1
CO4	2	1	3	2	1	1	1			1	2	1		1
CO5	1	2	3	2	1	2	2			2	2	2		1
COs /PSOs	_	PSO1		_	PSO2		_	PS	SO3			PSC)4	
CO1		3			2				1			2		
CO2		3			1				1			1		
CO3		3			2				1			2		
CO4		1			2				3			2		
CO5		3			2				3			1		
H/M/L indic	ates St	rength	of Corr	elation	H-H	ligh, M	- Medi	um,	L-I	ow		1		
					0)		>		t t					
	l o		ınd e	ø	tive	e)	inar		jec					
Category	Basic Science	gun	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary		Practical /Project					
teg	Sci	eeri ee	niti Sci	am .	am.	Ele	Jisc	2	cal,					
Ca	sic	Engineering Science	ıma ial	gre	gre	en	er I	1 1	ıcti					
	Ba	En Sci	Hu soc	Prα	Prα		Int	4	Prí					
						~								

Course Code	Course Title	Ty/Lb/	L	T / S.Lr	P/R	C
EBCS22OE2	ARTIFICIAL INTELLIGENCE	ETL/IE Ty	3	0/0	0/0	3

UNIT I PROBLEM SOLVING

9 Hrs

Introduction – Agents – Problem formulation – uninformed search strategies – heuristics – informed search strategies – hill climbing – constraint satisfaction-pruning

UNIT IIPROBLEM SOLVING METHODS

9 Hrs

Problem solving Methods - Search Strategies- Uninformed - Informed - Heuristics - Local Search Algorithms and Optimization Problems - Searching with Partial Observations - Constraint Satisfaction Problems - Constraint Propagation - Backtracking Search - Game Playing - Optimal Decisions in Games - Alpha - Beta Pruning - Stochastic Games

UNIT III KNOWLEDGE INFERENCE

9 Hrs

Knowledge representation -Production based system, Frame based system. Inference - Backward chaining, Forward chaining, Rule value approach, Fuzzy reasoning - Certainty factors, Bayesian Theory-Bayesian Network-Dempster - Shafer theory.

UNIT IV PLANNING AND MACHINE LEARNING

9 Hrs

Basic plan generation systems - Strips -Advanced plan generation systems - K strips -Strategic explanations -Why, Why not and how explanations. Learning- Machine learning, adaptive Learning.

UNIT VAPPLICATIONS

9 Hrs

AI applications – Language Models – Information Retrieval- Information Extraction – Natural Language Processing - Machine Translation – Speech Recognition – Robot – Hardware – Perception – Planning – Moving

Total Hours: 45

TEXT BOOK:

- 1. S. Russell and P. Norvig, "Artificial Intelligence: A Modern Approach", Prentice Hall, Third Edition, 2009.
- 2. Kevin Night and Elaine Rich, Nair B., "Artificial Intelligence (SIE)", McGraw Hill- 2008.
- 3. Dan W. Patterson, "Introduction to AI and ES", Pearson Education, 2007.
- 4. I. Bratko, —Prolog: Programming for Artificial Intelligence||, Fourth edition, Addison-Wesley Educational Publishers Inc., 2011

REFERENCES:

- 1. David Poole, Alan Mackworth, Randy Goebel, "Computational Intelligence : a logical approach", Oxford University Press, 2004.
- 2. G. Luger, "Artificial Intelligence: Structures and Strategies for complex problem solving", Fourth Edition, Pearson Education, 2002. 3. J. Nilsson, "Artificial Intelligence: A new Synthesis", Elsevier Publishers, 1998.
- 3. David L. Poole and Alan K. Mackworth, —Artificial Intelligence: Foundations of Computational Agents, Cambridge University Press, 2010.
- 4. Gerhard Weiss, —Multi Agent Systems, Second Edition, MIT Press, 2013.

COURSE CODE: EBCS22OE3			NAME DATA B		ONCE	PTS		Ty/I ETL			T / S.Lr	P/ R	С	
	Pro	erequisi	te: Nil					Ту		3	0/0	0/0	3	
L : Lecture T	: Tuto	rial S.	Lr : Supe	ervised	Learni	ng P:l	Project	R : Re	search C	: Credit	s			
T/L/ETL /IE	: Theor	y/Lab/E	Embedde	d Theo	ry and l	Lab/ In	ternal l	Evalua	ation					
OBJECTIV	E :													
The students														
•			e Basics			•	ъ .							
•			tand the	-		_		ures.						
COURSE O			e workin											
CO1		COMES (COs): Students will be able to nderstand the basics of various file system[L2]												
CO2		nalyze the various data models in DBMS[L24												
CO3		Understand the concept of relational database[L2]												
CO4		Inderstand the concept of Query language[L2]												
CO5			rious con					s[L3]						
Mapping of														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PC)12	
CO1	3	3	3	1	1	2	2		2	1	3		3	
CO2	2	3	2	3	3	1	1		2	3	2		1	
CO3	3	2	3	3	2	3	1		1	2	1		1	
CO4	3	2	3	3	3	2	2		2	1	3		3	
CO5	2	2	2	3	3	1	2		2	2	2		1	
COs / PSOs		PSO1			PSO2	•		PSO	3		PSO	4		
CO1		3						2			3			
CO2		3			3			2			2			
CO3		2			3			2			1			
CO4		1			2			3			1			
CO5		3			2			3			2			
H/M/L indic	ates St	rength	of Corr	elation	H- H	ligh, M	- Medi	um, L	-Low	1		1		
Category	Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	✓ Open Elective	Inter Disciplinary	Skill Component	Practical /Project					
						•								

Course Code		Ty/Lb/ ETL/IE	L	T / S.Lr	P/ R	C
EBCS22OE3	DATA BASE CONCEPTS	Ту	3	0/0	0/0	3

Unit I: Fundamentals of Database

9 Hrs

DBMS Definition, Characteristics of DBMS ,Application and advantages of DBMS, Instances, Schemas and Database States, Three Levels of Architecture, Data Independence, DBMS languages, Data Dictionary, Database Users, Data Administrators.

Unit II: ER Model 9 Hrs

Data Models, types and their comparison, Entity Relationship Model, Entity Sets, Attributes and its types, Constraints, Keys, E-R Diagram, Weak Entity Sets, Extended E-R Features.

Unit III: Relational Model

9 Hrs

Structure of Relational Databases, Relational Algebra (selection, projection, union, intersection, Cartesian product, Different types of join like natural join, outer join), Functional Dependencies, Good & Bad Decomposition, Anomalies as a database: A consequences of bad design, Normalization and its types.

Unit IV: SQL 9 Hrs

Introduction to SQL, DDL, DML, and DCL statements, Creating Tables, Adding Constraints, Altering Tables, Update, Insert, Delete & various Form of SELECT- Simple, Using Special Operators for Data Access. Aggregate functions, Nested Sub queries, Modification of the Database.

Unit V: PL / SQL 9 Hrs

Introduction to PL/SQL (blocks of PL/SQL, Variables, constants), Control Structure, Introduction to Stored Procedures, Functions, Cursor and Triggers.

Total Hours: 45

Text Book:

1. H. F. Korth& AbrahamSilverschatz, Database Concepts, Tata McGraw Hill, New Delhi

References:

- 1. C. J. Date, Database Systems, Prentice Hall of India, New Delhi.
- 2. Ivan Bayross, SQL, PL/SQL, The programming language of Oracle.

COURSE CODE:	CO		NAME TFTWA		IGINEI	ERING		Ty/Lb ETL/l		L	T / S.Lr	P/ R	С		
EBCS22OE4	_										0.10	0.10	1		
		erequisit						Ту		3	0/0	0/0	3		
L : Lecture T			•		•		•		h C: Cre	dits					
T/L/ETL/IE:		/Lab/Er	nbedded	Theory	and Lat	o/ Inter	nal Eval	uation							
OBJECTIVE															
The students s				1 11	•,,		1 .	,	C 1 '11						
			d system ethical p		-		_			مايين	to	aiata1 <i>a</i>	and.		
		and the nal prob		ormerpie	es in the	аррпса	ation of C	ompuu	ng-based	Solutio	ons to so	cietai a	ına		
_		•		eam and	l organi	zational									
		o work with diverse team and organizational COMES (COs): Students will be able to													
CO1			the syste				cle[L2]								
CO2	-		owledge		•			ed softv	vare syst	ems[[]:3	31				
CO3										CITIOLES	<u> </u>				
CO4		Analyze and construct CASE tools and application software [L4] Analyze systems in terms of general quality attributes and possible trade-offs presented within th										ithin the			
CO4		given problem[L4]													
CO5		Effectively participate in team-based activities[L2]													
Mapping of Course Outcomes with Program Outcomes (POs)															
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	1 P(012		
CO1	3	3	3	1	1	2	2	100	2	1	3		3		
CO2	2	3	2	3	3	1	1		2	3	2		1		
CO3	3	2	3	3	2	3	1		1	2	1		1		
CO4	3	2	3	3	3	2	2		2	1	3		3		
CO5	2	2	2	3	3	1	2		2	2	2		1		
COs /PSOs	_	PSO1			PSO2	_	_	PSO3		_		O4			
CO1		1	•		1			2				1			
CO2		1			1			2				2			
CO3		2			1			2				1			
CO4		1			2			1				1			
CO5		3			2		1					2			
H/M/L indica	ites Str	_	f Correl	ı ation		h. M- N	ledium,								
			001101		<u></u>										
Category	Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project						
	asic	ngi	Humani Science	3 0.	go.	beı	ter		act						

COURSE	Course Title	Ty/Lb/ ETL/IE	L	T / S.Lr	P/ R	С
EBCS22OE4	SOFTWARE ENGINEERING	Ту	3	0/0	0/0	3

Unit ISoftware Life Cycle Models

9Hrs

Software Process Introduction – S/W Engineering Paradigm – life cycle models: waterfall, incremental, spiral, winwin spiral, Agile, evolutionary, prototyping – Object-Oriented life cycle models-system engineering – computerbased system – life cycle process – development process.

Unit II Software Requirements

9Hrs

Requirements: Functional & non-functional – user-system requirement engineering process – feasibility studies – elicitation – validation & management – software prototyping – S/W documentation – Analysis and modelling – Case Tools.

Unit III Design Concepts

9Hrs

9Hrs

Design and Principles Modular design – design heuristic – Software architecture – data design – architectural design – transform & transaction mapping –Introduction to SCM process – Software Configuration Items.

Unit IVSoftware Testing

Testing Taxonomy of Software testing – levels – black box testing – testing boundary conditions – structural testing — regression testing – Software testing strategies – unit testing – integration testing – validation testing – system testing and debugging – Traceability matrix.

Unit V Software Project Management

9Hrs

Software cost estimation – Function point models – COCOMO model – Project Scheduling-Delphi method – Software challenges – Software Maintenance-Reliability – Reliability and availability models

Total Hours: 45

Text Books

- 1. R.S.Pressman, "Software Engineering A practitioners approach", Eighth Edition, McGraw Hill International editions, 2014. REFERENCE BOOKS
- 2. Ian Somerville, "Software Engineering", Tenth Edition, Pearson Education, 2015.

Reference Books

- 1. Hans van Vliet, "Software Engineering: Principles and Practice", Third Edition, John Wiley & Sons, 2008.
- 2.Stephen R. Schach, "Object-oriented and classical software Engineering", Fourth Edition, McGraw Hill, 2002.

COURSE	C	OURS	E NAN	Æ:					Ty/L		L	T/SLr	P/R	С
CODE:						~	_		ETL/	ΊE				
EBCS22OL			CIAL II	NTELI	AGEN	CE LA	B		т	1.		0.10	2 (0	
		erequisi								b	0	0/0	3/0	1
L : Lecture				-		-	_		,			ı C: Cre	edits	
T/L/ETL /IE		ory/Lat	o/Embe	edded '	Theory	and L	ab /Ir	itern	nal E	valuat	ion			
OBJECTIV		1												
The students			ie to iarize w	rith Dro	log by	imnlam	antin	a cin	anla /	A I Colu	itions			
			LISP b								itions			
COURSE O								DOIL	1110113	<u> </u>				
CO1	1													
CO2		Understand the concepts of Prolog[L2] write code for AI based problems[L2]												
CO3		Apply the knowledge to give solution AI based problems[L3]												
								_						
CO4	Abilit	Ability to identify solution constructs in AI based problems[L3]												
CO5	Analy	Analyze the solution constructs to solve AI problems[L4]												
Mapping of	f Course Outcomes with Program Outcomes (POs)													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P	PC) 8	PO9	PO10	PO1	1 PC)12
							O7							
CO1	1	1	1	1	1	1	2			1	1	1		1
CO2	1	1	1	1	1	1	2			1	1	1		1
CO3	1	1	1	1	1	1	2			1	1	1		1
CO4 CO5	2	2	1	2	1	2	2			<u>2</u> 1	1	1		2 1
COs /PSOs		O1	-	O2	-	O3		SO4	1	1	1	1		1
CO3/13O3	10	1	13	1		2	1	-	•			+		
CO2		<u>. </u>		<u>.</u> 2		2		2						
CO3		<u>. </u>		<u>-</u> 1		2		1						
CO4		2		2		<u>-</u> 1		2						
CO5		1	1	1		1		1						
3/2/1 indicat	es Stre	ngth of	Corre	lation	3- Hi	gh, 2- N	Mediu	ım, 1	1-Lov	W		_ I	L	
Category	Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component		Practical /Project				
						V	√							

COURSE	COURSE NAME:	Ty/Lb/	L	T/SL	P/R	С
CODE:	ARTIFICIAL INTELLIGENCE LAB	ETL/IE		r		
EBCS22OL1	Prerequisite: Programming Skill	Lb	0	0/0	3/0	1

List of Experiments

- 1. Study of Prolog.
- 2. Write simple fact for the statements using PROLOG.
- 3. Write predicates for the one that converts centigrade temperatures to Fahrenheit, the other checks if a temperature is below freezing.
- 4. Write a program to solve the Monkey Banana problem.
- 5. Write a programin turbo prolog for medical diagnosis and show the advantage and disadvantage of green and red cuts.
- 6. Write a program to implement factorial, Fibonacci of a given number.
- 7. Write a program to solve 4-Queen problem.
- 8. Write a program to solve traveling salesman problem.
- 9. Write a program to solve water jug problem using LISP

Total Hours:45

COURSE CODE:	COU	RSE N	AME:						Ty/Lb/	L	T/SL:	r P/R		С
CODE.		рир /	MySO	I PRO	CRAM	MING	LAR		ETL/IE					
EBCS22OL2	Prereq	uisite: N		LIKO	OKANI	WIII (G	LAD		Lb	0	0/0	3/	0	1
L : Lecture T : Ty/Lb/ETL/IE :			-		_	v				its			l	
OBJECTIVES	-	//Lau/Ei	Hoedae	a Theor	y and L	ao / Inte	mai Ev	aruatio)11					
The students sh		made t	O											
		undatio		e relatio	nal mod	del of da	ita							
present	t SQL an	id proce	dural in	terface	s to SQL	compre	ehensive	ely						
· ·		•				•		•	& physical	desig	ุก			
COURSE OUT											,			
CO1		Inderstand the requirement and develop the website. [L2] pply the knowledge todesign back-end connectivity for data storage [L3]												
CO2	Apply	the kno	wledge	ta storage	[L3]									
CO3	Apply	apply the knowledge & understanding of database analysis and design[L3]												
CO4	Apply	Apply the programming skill and techniques to write programs using SQL [L3]												
CO5	Apply the set operations and aggregate function[L3]													
Mapping of Co	ourse O	utcome	s with I	Progran	n Outco	omes (P	Os)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO)10 I	PO11	PO	12
CO1	1	1	2	1	1	1	1		1			1		1
CO2	1	1	1	3	2	1	1		1			1		1
CO3	1	1	2	1	1	1	1		1			2		2
CO4	2	2	1	3	2	1	2		2	+	1	2		1
CO5	1	1	2	1	1	1	1		1		1	1		2
COs / PSOs		PSO1			PSO2			PSC)3			PSO ₂	1	
CO1		2			2			1				1		
CO2		1			1			1				1		
CO3		2			2			1				1		
CO4		1			1			1				1		
CO5		2			2			1				1		
3/2/1 Indicates	ates Strength Of Correlation, 3 – High, 2- Medium, 1- Low													
Category	Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary Skill Component Practical /Project							

Course Code	ourse Code COURSE NAME:		L	T/SLr	P/R	С
Course Coue	COURSE NAME:	ETL/IE				
		Lb	0	0/0	3/0	1
EBCS22OL2	PHP / MySQL PROGRAMMING LAB					
	• •					

List of Experiments

- 1. Implement the Select statements for queries.
- 2. Perform the Nested queries using SQL.
- 3. Implement the Update operations using SQL.
- 4. Perform the Built in functions in SQL.
- 5. Implement of Use of index, creating views and querying in views.
- 6. Create a PHP webpage and print "hello world".
- 7. Write a PHP program to swap two numbers.
- 8. Develop a PHP program to find maximum of three numbers.
- 9. Create a PHP program to find odd or even number from given number.
- 10. Write a PHP Program to demonstrate the variable function: Gettype():
- 11. Develop a PHP Program to demonstrate the variable unction: Settype():
- 12. Write a PHP program to drop table using MySQL. Write a PHP program that demonstrate passing variable using URL.
- 13. Create a student Registration in PHP and Save and Display the student Records.

Total Hours:45

GOVE 37	C	OURS	E NAMI	E:				Ty/Lb/	L	T/SLr	P/R	С	
COURSE						_		ETL/IE					
CODE:				TABAS	SE LAF	3							
EBCS22OL3	P	rerequisi	ite: Nil					Lb	0	0/0	3/0	1	
L : Lecture T	· Tutoria	al SLr	Supervis	sed Lear	ning P	Project	R · Rese	arch C: C	redits '	 [/L./ETL./	TE·		
Theory/Lab/E			•		•		11.11050	aren e. e	rearts .	., . , .			
OBJECTIVE			·										
The students s	should b	e made t	О										
• To ge	t knowle	edge in S	QL toSto	ore, Mod	ify and I	Retrieva	of data	from the a	ppropri	ate datab	ase		
COURSE OUT	COMES	(COs): St	udents w	ill be ab	le to								
CO1	Unders	stand the	nrogram	ming and	d theoret	tical con	cent of S	QL comm	andell	21			
CO2								f query [L		<u> </u>			
CO3									_	L[L3]			
CO4		the knowledge to store data in the database, using SQL and $PL / SQL[L3]$ the knowledge to retrieve the data stored in the database, Using SQL and $PL / SQL[L3]$											
CO5		te a database and query it using SQL and PL / SQL[L3]											
		rse Outcomes with Program Outcomes (POs)											
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	3	2	1	1	3	2		2	1	1	2	
CO2	3	3	3	2	1	2	1		1	1	2	2	
CO3	2	2	3	2	2	3	1		1	1	2	3	
CO4	2	2	3	2	2	3	1		1	1	2	3	
CO5	3	3	2	2	1	3	2		2	1	3	3	
COs / PSOs	PS	01	PSO	02	PS	О3	PS	04					
CO1		2	3	3	3	3	3	3					
CO2		3	3		3		3						
CO3		2	3	}		3	2						
CO4	1	2	3			3	2						
CO5	-	2	3			3	3						
1/2/3 indicate					gh, 2- M				<u>l</u>				
			Tel										
Category	Basic Science	Engineering Science	Humanities and social Science	Program Core	Program elective	Open Elective	Inter Disciplinary	Skill Component	Practical /Project				
	Bį	Ē	ΞŠ	Pr	Pr		In		Pr				
						$\sqrt{}$	/						

COURSE	COURSE NAME:	Ty/Lb/	L	T/SLr	P/R	С
CODE:		ETL/IE				
EBCS22OL3	DATABASE LAB	Lb	0	0/0	3/0	1

List of Experiments

I. PROGRAM TO LEARN SQL COMMANDS

- 1. Execution of DDL Commands
- 2. Execution of DML Commands
- 3. Insert Command
- 4. Select, From and Where Clause
- 5. Set Operation [Union, Intersection, Except]
- 6. Nested Queries
- 7. Join Operation
- 8. Modification of the Database

II. PL / SQL programs

- 11. Control statements (for loop)
- 12. Control statements (while loop)
- 13. Control statements (for reverse loop)
- 14. Control statements (loop end loop)
- 15. Series generation
- 16. Implementation of sub-program
- 17. Control statement (if-else end if)

Total Hours:45